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Unit -3 Matrices -1 

➢ Definition: Matrix:  

Suppose that mn elements 𝑎𝑖𝑗, i= 1, 2, 3, …, m, j= 1,2, 3, …, n is given. A 

rectangular arrangement of these elements in m rows and n columns can be 

described as follows:  

A = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋮ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] 

The arrangement of this type is called a matrix of the type m × n or an m × n 

matrix.  

Matrices are denoted by capital letters. It is also denoted by A m × n . 0r [𝑎𝑖𝑗]m × n 

e.g. A= [
1 1
2 −1
0 7

]

3×2

,  A= [

2 −4 −1

0
1

2

1

4

1 6 −
7

4

]

3×3

 , A= [
2 1 0

−1 2 1
]
2×3

 

Note: -  

• If all the elements of a matrix are real numbers, then it is called a real matrix 

and if the elements of a matrix are complex numbers then it is called a 

complex matrix. 

e.g. A= [

2 −4 −1

0
1

2

1

4

1 6 −
7

4

]

3×3

is the real matrix and 

 

 B= [
2 −4 −1
0 2 + 𝑖 3 − 𝑖
1 6 𝑖

]

3×3

is complex matrix  

 

• If m = n then matrix is called a square matrix of order n. 
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e.g. A= [

2 −4 −1

0
1

2

1

4

1
−5

2
−

7

4

]

3×3

 

• A square matrix A of order n is denoted by the symbol = [𝑎𝑖𝑗]𝑛 

• A matrix [

𝑎1

𝑎2

⋮
𝑎𝑛

]   of the type n × 1 is called a column vector or column matrix. 

• A matrix  [𝑎1 𝑎2 ⋯ 𝑎𝑛]  of the type 1 × n is called a row vector or row 

matrix. 

• If all the elements of an m × n matrix are zeros, then it is called a zero 

matrix or a null matrix of the type m × n. Zero matrix denoted by simple O.  

e.g. O = [

0 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0

] 

 

➢ Definition:  Equality of Matrices: - 

If A =[𝑎𝑖𝑗]m × n   and B = [𝑏𝑖𝑗]m × n be two matrices. and  𝑎𝑖𝑗 = 𝑏𝑖𝑗  for i= 1, 2, 3, 

…, m, j= 1,2, 3, …, n , then we say that A and B are equal matrices and denoted by 

A = B. 

e.g. (1)A=  [
2 −4 −1
0 3 4
1 6 2

]

3×3

 and B=  [
2 −4 −1
0 3 4
1 6 2

]

3×3

 then A = B 

But if A= [
1 1
2 −1
0 7

]

3×2

and B= [
1 2 0
1 −1 7

]
2×3

 then A ≠B. 

➢ Definition:  Addition of Matrices: - 

If A =[𝑎𝑖𝑗]m × n   and B = [𝑏𝑖𝑗]m × n be two matrices. Their addition A +B is 

defined by the matrix C = [𝑐𝑖𝑗]m × n  where 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗  for i= 1, 2, 3, …, m, j= 

1,2, 3, …, n . 
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e.g.(1)   A=  [
2 −4 −1
0 3 4
1 6 2

]

3×3

 and B=  [
3 3 −1
0 1 −3

−1 3 2
]

3×3

 then  

A +B =  [
5 −1 −2
0 4 1
0 9 4

]

3×3

   

also, we can find  

A-B=  [
−1 −7 0
0 2 7
2 3 0

]

3×3

 

➢ Note:  

We cannot add two matrices of different orders. 

e.g.  A=  [
2 −4 −1
0 3 4
1 6 2

]

3×3

and B= [
1 2 0
1 −1 7

]
2×3

  

then we cannot find A +B or A-B. 

➢ Definition:  Scalar multiple of Matrices: - 

Let A be an m × n matrix and α be any scalar. Also, A =[𝑎𝑖𝑗]m × n. The scalar 

multiple “αA” of A is defined by the matrix C = [𝑐𝑖𝑗]m × n  where 𝑐𝑖𝑗 = 𝛼𝑎𝑖𝑗  for i= 

1, 2, 3, …, m, j= 1,2, 3, …, n . 

e.g. A= [
1 2 0
1 −1 7

]
2×3

 if we take α =3 then αA = 3A = [
3 6 0
3 −3 21

]
2×3

= 𝐶 

➢ Definition:  Diagonal Matrix: - 

A square matrix whose all the elements except the diagonal elements are zero is 

called a diagonal matrix.  

A = [

𝑎11 0 ⋯ 0
0 𝑎22 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝑎𝑛𝑛

] is the diagonal matrix. 
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The elements 𝑎11, 𝑎22, ⋯ , 𝑎𝑛𝑛 of a square matrix A =[𝑎𝑖𝑗] n are called diagonal 

elements. 

The diagonal matrix is also written as 𝑑𝑖𝑎𝑔(𝑎11, 𝑎22, … , 𝑎𝑛𝑛) 

➢ Definition:  Identity Matrix: - 

If the diagonal element of diagonal matrix of order n are 1. Then this matrix is 

called an identity matrix of order n and it is denoted by In or I. 

I = [

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 1

] is the identity matrix of order n. 

 I = [
1 0 0
0 1 0
0 0 1

] is the identity matrix of order 3.   

I = [
1 0 0
0 3 0
0 0 −1

] is not an identity matrix but it is diagonal matrix of order 3.  

It is also written as  𝑑𝑖𝑎𝑔(1,3, −1)  

➢ Definition:  Upper triangular Matrix: - 

A square matrix A =[𝑎𝑖𝑗] n, if 𝑎𝑖𝑗 = 0 for   𝑖 > 𝑗    then A is called an upper 

triangular matrix.    

ie A = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

0 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝑎𝑛𝑛

] is upper triangular matrix of order n. 

e.g. A = [
1 1 9
0 3 2
0 0 −1

] is an upper triangular matrix of order 3. 

➢ Definition:  Lower triangular Matrix: - 

A square matrix A =[𝑎𝑖𝑗] n, if 𝑎𝑖𝑗 = 0 for   𝑖 < 𝑗    then A is called lower triangular 

matrix.    
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ie A = [

𝑎11 0 ⋯ 0
𝑎21 𝑎22 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] is lower triangular matrix of order n. 

e.g. A = [
1 0 0
1 3 0
5 4 −1

] is lower triangular matrix of order 3. 

 

➢ Properties of Matrix: 

 Let A, B and C are square matrices and α and β are any scalar. Then, 

(1)  A + B = B + A (Commutativity)  

(2)  A + (B + C) = (A + B) + C (Associativity)  

(3)  α (A + B) = αA + αB, 

(4) (α+β) A = α A+βA  

(5) (αβ) A = α (βA)  

 

➢ Example: If A = [
1 0 3
1 3 9
5 4 −1

] and B =[
1 1 0
1 3 2
5 4 −1

] then prove that 

commutative law of addition is satisfied . or prove that A + B = B + A. 

Solution: Since A + B =[
1 0 3
1 3 9
5 4 −1

]+[
1 1 0
1 3 2
5 4 −1

] = [
2 1 3
2 6 11
10 8 −2

] 

And B + A= [
1 1 0
1 3 2
5 4 −1

] + [
1 0 3
1 3 9
5 4 −1

] = [
2 1 3
2 6 11
10 8 −2

] 

Thus, we get, A + B = B + A 

∴ the commutative law of addition is satisfied. 

➢ Definition:  Multiplication of the Matrices: - 

Let A =[𝑎𝑖𝑗] and B = [𝑏𝑗𝑘] be matrices of the types m × n and n × p respectively. 

Their product AB is defined by the matrix C = [𝑐𝑖𝑘]   
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where 𝑐𝑖𝑘 = ∑ 𝑎𝑖𝑗𝑏𝑗𝑘
𝑛
𝑘=1  = (ith row vector of A) (kth column vector of B), i= 

1,2,3…,m and k = 1,2,…,p  

clearly AB is of the type m × p  

➢ Note: If the number of columns of A is equal to the number of rows of B, then 

and only then AB is defined. Sometimes AB is defined but BA may not be 

defined. If A and B are square matrices of order n, then AB and BA both are 

defined. But AB may or may not be same as BA. 

e.g. 

(1)  A = [
1 0
1 3

] and B == [
−1 1
2 3

] then  

 

AB =[
1 0
1 3

] [
−1 1
2 3

]= [
−1 1
5 10

] 

 

And BA =[
−1 1
2 3

] [
1 0
1 3

] = [
0 3
5 9

] 

 

Thus, we get AB ≠ BA. 

 

(2)  A = [
1 0
0 0

] and B = [
0 0
1 0

] then  

 

AB =[
1 0
0 0

] [
0 0
1 0

]= [
0 0
0 0

] 

Thus, we get AB = 0 but A ≠0 and B≠0. 

(3) If A = [
1 2 3
1 1 2

−1 4 3
] B = [

1 2 3
1 1 −1
2 2 2

] , C = [
2 3 4
2 2 0
1 1 1

] 

 

Then AB =  [
1 2 3
1 1 2

−1 4 3
]  [

1 2 3
1 1 −1
2 2 2

]  = [
9 10 7
6 7 6
9 8 −1

] 

 

And AC = [
1 2 3
1 1 2

−1 4 3
]  [

2 3 4
2 2 0
1 1 1

]  = [
9 10 7
6 7 6
9 8 −1

] 
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Thus, we get AB = AC but B≠C 

This prove that AB = AC ⇏B = C 

(4) If A = [
1 2 3
1 1 2

−1 4 3
] and B = [

1 2 3
1 1 −1

] then we cannot find AB 

But BA = [
1 2 3
1 1 −1

] [
1 2 3
1 1 2

−1 4 3
] = [

0 16 16
3 −1 2

] 

 

Here B is 2×3 type matrix and A is 3×3 type matrix thus, we get BA is 2×3 type 

matrix. 

➢ Note:  If A is a square matrix then AA is denoted by A2, AAA by A3 and 

AAA…A (n times) by An. 

 

➢ Definition:  Transpose of a Matrices: - 

Let A be an n ×m matrix and A =[𝑎𝑖𝑗]𝑚×𝑛. Then matrix obtained by 

interchanging rows and columns of A is called transpose of A and is denoted 

by AT or A'. Obvious AT is of the type m × n. 

Thus, we get  A =[𝑎𝑖𝑗]𝑚×𝑛 then we get AT= [𝑎𝑗𝑖]𝑛×𝑚 

 

e.g.(1)  If A = [
0 6 5
3 2 0

]
2×3

 then AT= [
0 3
6 2
5 0

]

3×2

 

 

(2) If  I = [
1 0 0
0 1 0
0 0 1

] then IT=[
1 0 0
0 1 0
0 0 1

] thus we get I = IT. 

 

(3) If  O = [
0 0 0
0 0 0
0 0 0

] then OT=[
0 0 0
0 0 0
0 0 0

] thus we get O = OT. 

 

➢ Statement:  if A and B are m × n matrices then prove that following 

(1) (A+ B)T = AT + BT  

(2) (αA)T =α AT 

(3) (AT)T = A 
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Proof:  

(1) we know that if A and B are m × n matrices then (A + B) is m × n matrix 

       Thus, we get AT and BT are n × m matrices. 

           ∴ AT + BT is n × m matrix and (A+ B)T is n × m matrix. 

∴  we get (A+ B)T = AT + BT  

(2)   we know that if A is m × n matrix then (αA)is m × n matrix 

          Thus, we get AT is n × m matrix. 

∴ αAT is n × m matrix 

           ∴ (αA)T is n × m matrix.  

∴  we get, (αA)T =α AT. 

(3)    if A is m × n matrix 

          Then, we get AT is n × m matrix. 

∴ (AT)T is m × n matrix 

∴  we get, (AT)T = A. 

e.g. 𝐴 = [
1 2 3
1 1 −1
2 2 2

] , B = [
2 3 4
2 2 0
1 1 1

] then . 𝐴𝑇 = [
1 1 2
2 1 2
3 −1 2

] ,  

  𝐵𝑇 = [
2 2 1
3 2 1
4 0 1

]   

Now, 𝐴 + 𝐵 = [
3 5 7
3 3 −1
3 3 3

]   

Therefore, (𝐴 + 𝐵)𝑇 = [
3 3 3
5 3 3
7 −1 3

] and 
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 𝐴𝑇 + 𝐵𝑇 = [
1 1 2
2 1 2
3 −1 2

] + [
2 2 1
3 2 1
4 0 1

] = [
3 3 3
5 3 3
7 −1 3

]  

 

Thus, we get (A+ B)T = AT + BT  

 

Theorem: if A and B be matrices of the order m × n and n × p respectively then 

prove that (A B)T = BT AT. 

Proof:   Here A and B be matrices of the order m × n and n × p respectively  

∴ AT is of the order n × m matrix and BT is of the order p × n matrix.  

i.e. Let A =[𝑎𝑖𝑗]𝑚×𝑛 then we get AT= [𝑎𝑗𝑖]𝑛×𝑚  

and if B =[𝑏𝑗𝑘]𝑛×𝑝 then we get BT= [𝑏𝑘𝑗]𝑝×𝑛 

Here AB is defined, and it is an m × p matrix. 

i.e. AB =[𝑎𝑖𝑗]𝑚×𝑛[𝑏𝑗𝑘]𝑛×𝑝 = [𝑐𝑖𝑘]𝑚×𝑝 say  

∴ (A B)T = [𝑐𝑘𝑖]𝑝×𝑚   ---------------------(1) 

Now,  

BT AT =[𝑏𝑘𝑗]𝑝×𝑛[𝑎𝑗𝑖]𝑛×𝑚  = [𝑐𝑘𝑖]𝑝×𝑚  Say  

∴ BT AT = [𝑐𝑘𝑖]𝑝×𝑚  --------------------------(2) 

From (1) and (2)  

we get (A B)T = BT AT. 

(OR) 

The (i, k) th element of BT AT = ∑ 𝑏𝑘𝑗𝑎𝑗𝑖
𝑛
𝑘=1 = The (k, i) th element of AB = The (i, 

k) th element of (AB)T. 

Thus, we get (A B)T = BT AT   

 

➢ Definition:  Symmetric and skew-symmetric Matrices: - 

 

Let A =[𝑎𝑖𝑗]𝑛 be a square matrix of order n. If A = AT then A is called a symmetric 

matrix and if A If A = - AT then A is called a skew-symmetric matrix. 

e.g. (1) A =  [
1 2 3
2 1 2
3 2 3

]   and B =  [

1 0 2 1
0 1 2 −1
2 2 6 5
1 −1 5 0

] are symmetric matrices. 
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(1) A =  [
0 𝑎 𝑏

−𝑎 0 𝑐
−𝑏 −𝑐 0

]   and B =  [

0 0 2 1
0 0 2 −1

−2 −2 0 −5
−1 1 5 0

] are skew-symmetric 

matrices. 

➢ Note:  

• The diagonal elements of a skew symmetric matrix are zero. 

• Any square matrix A =[aij]n can be expressed as a sum of a symmetric and  

        skew symmetric matrices.  

 A = 
𝟏

𝟐
(𝑨 + 𝑨𝑻) +

𝟏

𝟐
(𝑨 − 𝑨𝑻). 

• If A is a symmetric matrix then aij = aji  

➢ Example: Express the matrix A =[
−1 7 1
2 3 4
5 0 5

] as a sum of symmetric and 

skew-symmetric matrix.  

Solution: We know that Any square matrix A =[aij]n can be expressed as a sum 

of a symmetric and skew symmetric matrices as 

                 

A = 
1

2
(𝐴 + 𝐴𝑇) +

1

2
(𝐴 − 𝐴𝑇). 

 

Here A =[
−1 7 1
2 3 4
5 0 5

]  and 𝐴𝑇 = [
−1 2 5
7 3 0
1 4 5

] 

 

Thus (𝐴 + 𝐴𝑇) = [
−1 7 1
2 3 4
5 0 5

] + [
−1 2 5
7 3 0
1 4 5

] = [
−2 9 6
9 6 4
6 4 10

] 

 

And (𝐴 − 𝐴𝑇) = [
−1 7 1
2 3 4
5 0 5

] − [
−1 2 5
7 3 0
1 4 5

] = [
0 5 −4

−5 0 4
4 −4 0

] 

 

∴ R.H.S. =
1

2
(𝐴 + 𝐴𝑇) +

1

2
(𝐴 − 𝐴𝑇). =

1

2
[
−2 9 6
9 6 4
6 4 10

] +
1

2
[

0 5 −4
−5 0 4
4 −4 0

]. 
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                =
1

2
[
−2 14 2
4 6 8
10 0 10

] = [
−1 7 1
2 3 4
5 0 5

] = 𝐴=L.H.S. 

 

 Thus, we get L.H.S.=R.H.S. 

 

➢ Definition:  conjugate Matrices: - 

Let A be m × n complex matrix and A =[aij]𝑚×𝑛. A matrix obtained by 

replacing aij by [aij̅̅ ̅] is called the conjugate matrix of A and is denoted by �̅�. 

The transpose of �̅� i.e. (�̅�)𝑇is called the transposed conjugate of A. It is 

denoted by A*. Thus (A*) = (�̅� )𝑇. Obviously (�̅� )𝑇 = (𝐴𝑇)̅̅ ̅̅ ̅̅  . 

 

e.g. A= [
1 + 𝑖 −2𝑖
3 − 𝑖 4 + 𝑖

5 3 − 2𝑖
]

3×2

  

 

 ∴ �̅� = [
1 − 𝑖 2𝑖
3 + 𝑖 4 − 𝑖

5 3 + 2𝑖
]

3×2

 

 

∴(A*) = (�̅� )𝑇=[
1 − 𝑖 3 + 𝑖 5
2𝑖 4 − 𝑖 3 + 2𝑖

]
2×3

 

 

➢ Definition:  Hermitian and skew-Hermitian Matrices: - 

Let A =[𝑎𝑖𝑗]𝑛 be a square matrix of order n. If A = A* then A is called a 

Hermitian matrix and If A = - A* then A is called a skew-Hermitian matrix. 

 

e.g. (1)  Let A =  [
1 + 𝑖 −2𝑖
2𝑖 4 + 𝑖

]
2×2

  

 

∴ �̅� = [
1 − 𝑖 2𝑖
−2𝑖 4 − 𝑖

]
2×2

 

 

∴(A*) = (�̅� )𝑇= [
1 − 𝑖 −2𝑖
2𝑖 4 − 𝑖

]
2×2

 ≠ A   0r -A  
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Therefore, it is neither Hermitian nor skew Hermitian matrix. 

 

(2) Let A =  [
1 2 + 𝑖

2 − 𝑖 4
]
2×2

  

 

∴ �̅� = [
1 2 − 𝑖

2 + 𝑖 4
]
2×2

 

 

∴(A*) = (�̅� )𝑇= [
1 2 + 𝑖

2 − 𝑖 4
]
2×2

 = A    

 

Therefore, it is Hermitian.  

 

(3) Let A =  [
0 𝑖
𝑖 0

]
2×2

  

∴ �̅� = [
0 −𝑖
−𝑖 0

]
2×2

 

 

∴(A*) = (�̅� )𝑇= [
0 −𝑖
−𝑖 0

]
2×2

 =−[
0 𝑖
𝑖 0

]
2×2

  -A  

   

Therefore, it is skew -Hermitian matrix. 

 

(3) Let A =  [
𝑖 1 + 𝑖

2 − 𝑖 𝑖
]
2×2

  

 

∴ �̅� = [
−𝑖 1 − 𝑖

2 + 𝑖 −𝑖
]
2×2

 

 

∴(A*) = (�̅� )𝑇= [
−𝑖 2 + 𝑖

1 − 𝑖 −𝑖
]
2×2

 ≠ A   0r -A 

 

Therefore, it is neither Hermitian nor skew Hermitian matrix. 

 

➢ Note:  

• In a Hermitian matrix all diagonal elements are real numbers. 

• The diagonal elements of a skew Hermitian matrix are either zero or purely 
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 complex numbers. 

 

➢ Prove that  

(i) (A+ B)* = A* + B*  (ii) (A*)* = A  (iii) (AB)* =B*A* (iv) (αA)* = α̅A* 

 Proof:- (i) Let A =[𝑎𝑖𝑗]𝑛  and A =[𝑏𝑖𝑗]𝑛 be a complex square matrices of order n. 

  Here i= j  

. ∴ (A + B) = ([𝑎𝑖𝑖]𝑛  +[𝑏𝑖𝑖]𝑛 ) = [𝑐𝑖𝑖]𝑛 

. ∴ (A + B)* = (𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅  )𝑇 = (�̅� + �̅�)𝑇    = [𝑐𝑖𝑖̅̅ ̅ ]𝑛
𝑇

=([𝑎𝑖𝑖̅̅̅̅ ]𝑇
𝑛  +[𝑏𝑖𝑖

̅̅ ̅]𝑇
𝑛

 )  

= A* + B* 

 ∴ (A+ B)* = A* + B*   

 (ii) (A*)* =([𝑎𝑖𝑖̅̅̅̅ ]𝑇
𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑇 =([𝑎𝑖𝑖]𝑛 =A 

∴  (A*)* = A   

 (iii) (AB)* == (𝐴𝐵̅̅ ̅̅  )𝑇  = [𝑐𝑖𝑖̅̅ ̅ ]𝑛
𝑇

= [𝑐𝑖𝑖̅̅ ̅ ]𝑛 

Now B*A* = [𝑏𝑖𝑖
̅̅ ̅]𝑇

𝑛
 ([𝑎𝑖𝑖̅̅̅̅ ]𝑇

𝑛  )   =[𝑏𝑖𝑖
̅̅ ̅][𝑎𝑖𝑖̅̅̅̅ ]=[𝑐𝑖𝑖̅̅ ̅ ]𝑛  

Example: - If A is square matrix, then prove that A +A* is Hermitian and A-A* is 

skew Hermitian. 

Solution: -   Here (A +A*)* = A* +(A*)* = A* +A  

Thus, we prove that  (A +A*)* = A+A*   

(∵ definition of Hermitian matrix as A* = A)  

∴A +A* is Hermitian matrix. 

 Now, (A -A*)* = A* -(A*)* = A* -A  

Thus, we prove that  (A -A*)* = -A+A*  = -(A -A*) 

(∵ definition of Skew Hermitian matrix as A* =- A)  

∴A -A* is skew Hermitian matrix. 

 

➢ Example: - If A and B are symmetric matrices of the same order, then prove  

                           that AB – BA is a skew- symmetric matrix. 
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Solution: - Here A and B are symmetric matrices is given. 

 ∴ A = AT and B = BT. 

Now, (AB – BA)T =  (AB)T – (BA)T = BTAT -ATBT = BA – AB = -(AB – BA) 

Thus, we get (AB – BA)T =  -(AB – BA) 

∴  this prove that AB – BA is a skew- symmetric matrix. 

➢ Example: - If A and B are Hermitian matrices of the same order, then prove 

that AB – BA is a skew- Hermitian matrix. 

Solution: - Here A and B are Hermitian matrices is given. 

 ∴ A = A* and B = B*. 

Now, (AB – BA)* =  (AB)* – (BA)* = B*A* - A*B* = BA – AB = -(AB – BA) 

Thus, we get (AB – BA)* =  -(AB – BA) 

∴  this prove that AB – BA is a skew- Hermitian matrix. 

➢ Example: - If A is skew-Hermitian matrix, then prove that iA is a Hermitian 

matrix. 

Solution: - Here A is skew-Hermitian matrix is given. 

 ∴ A* = - A. 

Now, (iA)* = 𝑖A̅* =-i(-A)= iA 

Thus, we get (iA)* =  iA  

∴  this prove that iA is a Hermitian matrix. 

 

➢ Example: - If A is Hermitian matrix, then prove that iA is a skew- 

Hermitian matrix. 

Solution: - Here A is Hermitian matrix is given. 

 ∴ A* = A. 
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Now, (iA)* = 𝑖A̅* =-i(A)= -iA 

Thus, we get (iA)* = - iA  

∴  this prove that iA is a skew-Hermitian matrix. 

 

Elementary Operation: 

➢ Definition: Elementary row operations: 

The following operations for the matrix A are called elementary row operations: 

(1) Interchange of two rows 

(2) The multiplication of ith row by a non-zero number k. ri(k). 

(3) Adding to ith row the multiplication by k of the jth row. (ri + krj)  

e.g(1)  A =  [

1 0 2 1
0 1 2 −1
2 2 6 5
1 −1 5 0

]  

Interchange of two rows of the given matrix A i.e. Interchange of r1 and r2. 

Then, we get the matrix B =[

0 1 2 −1
1 0 2 1
2 2 6 5
1 −1 5 0

]   Here A~B. 

Now, The multiplication of 3th row by a non-zero number 2. R3(2). 

Then we get the matrix B as C=  [

0 1 2 −1
1 0 2 1
4 4 12 10
1 −1 5 0

] Here B~C. 

(4) Now, Adding to 4th row the multiplication by -3 of the 2th row. (r4 + (-3)r2)  

D=[

0 1 2 −1
1 0 2 1
4 4 12 10

−2 −1 −1 −3

] Here C~D. 

Thus, we get A~D 

➢ Definition: Elementary column operations: 

The following operations for the matrix A are called elementary column 

operations: 

(1) Interchange of two column. 

(2) The multiplication of ith column by a non-zero number k. ci(k). 

(3) Adding to ith column the multiplication by k of the jth column. (ci + kcj)  
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➢ Definition: Row equivalent matrix: 

The matrix B obtained by performing a finite numbers of elementary operations 

finite numbers of times to a matrix A is called row equivalent matrix to A. 

It is denoted by B~A. 

 

➢ Definition: inverse of the matrix:  

If A and B are square matrices of same type such that AB = BA = I, then B is 

called the inverse of A. Here I is the identity matrix.  

The inverse of A is denoted by A-1.  

e.g. A= [
1 2 4

−1 1 1
1 0 1

] and B= [
1 −2 −2
2 −3 −5

−1 2 2
] 

Then AB = BA = [
1 0 0
0 1 0
0 0 1

] = I 

Therefore, B is the inverse of A. i.e. B = A-1.  

➢ Note:  

• The determinant of a square matrix A is denoted by detA or |𝐴|.  

 i.e. |𝐴| = |

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋮ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

| 

➢ Definition: minor (or sub determinant) 

The minor (or sub determinant) of any element of a determinant is the 

determinant obtained by the row and column in which that element occurs. 

 e.g. the minor of b2 in |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| is  |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| i.e |
𝑎1 𝑐1

𝑎3 𝑐3
| 

 

Similarly, the minor of b3 in|

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|  is  |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|   i.e |
𝑎1 𝑐1

𝑎2 𝑐2
| 
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 And the minor of a1 in|

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|   is |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| is   i.e |
𝑏2 𝑐2

𝑏3 𝑐3
| 

➢ Definition: Cofactor: -  

The value of minor sign i. e. the coefficient of an element in the expansion of 

determinant is called the cofactor of this element.  

i.e. In the matrix  [𝑎𝑖𝑗]𝑛  The cofactor of 𝑎𝑖𝑗 = (−1)𝑖+𝑗minor of 𝑎𝑖𝑗 

The cofactor of 𝑎𝑖𝑗   is denoted by the symbol 𝐴𝑖𝑗. 

Thus, 𝐴𝑖𝑗 = cofactor of 𝑎𝑖𝑗 = (−1)𝑖+𝑗minor of 𝑎𝑖𝑗 

i.e. e.g. the minor of b2 in |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| is|

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|   i.e |
𝑎1 𝑐1

𝑎3 𝑐3
| 

therefore, the cofactor of b2 in |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| = (−1)2+2 |
𝑎1 𝑐1

𝑎3 𝑐3
| = 𝐴22 

Similarly, the minor of b3 in|

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|  is  |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|   i.e |
𝑎1 𝑐1

𝑎2 𝑐2
| 

therefore, the cofactor of b3 in |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| = (−1)2+3 |
𝑎1 𝑐1

𝑎2 𝑐2
| = 𝐴32 

 

 And the minor of a1 in|

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

|   is |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| is   i.e |
𝑏2 𝑐2

𝑏3 𝑐3
| 

therefore, the cofactor of a1 in |

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3

| = (−1)1+1  |
𝑏2 𝑐2

𝑏3 𝑐3
| = 𝐴11 
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➢ Definition: - Adjoint Matrix: - 

Let A =  [𝑎𝑖𝑗]𝑛 be square matrix of order n. If B =  [𝑏𝑖𝑗]𝑛 is a square matrix 

such that 𝑏𝑖𝑗 = 𝐴𝑖𝑗  (𝑖, 𝑗 = 1,2,3,… , 𝑛), Then B is called the adjoint matrix of A 

i.e. 𝑎𝑑𝑗𝐴 = [𝐴𝑖𝑗]
𝑇
. 

It is denoted by the symbol 𝑎𝑑𝑗𝐴, where 𝐴𝑖𝑗 is the cofactor of 𝑎𝑖𝑗. 

[𝐴𝑖𝑗] = [

𝐴11 𝐴12 ⋯ 𝐴1𝑛

𝐴21 𝐴22 ⋯ 𝐴2𝑛

⋮ ⋮ ⋮ ⋮
𝐴𝑛1 𝑎𝑛2 ⋯ 𝐴𝑛𝑛

]  

 

➢ Example: Find the 𝑎𝑑𝑗𝐴 for A = [
2 3 −1

−1 3 2
2 1 2

]. 

 

Solution: Here A = [
2 3 −1

−1 3 2
2 1 2

] 

 

𝐴11 =(−1)1+1 [
2 3 −1

−1 3 2
2 1 2

] = (−1)1+1 [
3 2
1 2

] =|
3 2
1 2

|=6 - 2 = 4 

Similarly, A12 =(−1)1+2 |
−1 2
2 2

| =-( -2-4) = 6   

 A13 =(−1)1+3 |
−1 3
2 1

| = -1- 6 = -7 

A21 =(−1)2+1 |
3 −1
1 2

|  = -(6+1) = -7, A22 =(−1)2+2 |
2 −1
2 2

|  = 4+2 =6,  

A23 =(−1)2+3 |
2 3
2 1

|  = -(2-6) = 4, A31 =(−1)3+1 |
3 −1
3 2

|  = (6+3) = 9,  

A32 =(−1)3+2 |
2 −1

−1 2
|  = -(4-1) = -3, A33 =(−1)3+3 |

2 3
−1 3

| = (6+3) = 9,  

 

 

[𝐴𝑖𝑗] =  [
4 6 −7

−7 6 4
9 −3 9

]  thus,  𝑎𝑑𝑗𝐴 = [𝐴𝑖𝑗]
𝑇

= [
4 −7 9
6 6 −3

−7 4 9
] 
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➢ Theorem: If A =  [𝑎𝑖𝑗]𝑛 be square matrix of order n. Then prove that 

 A (𝑎𝑑𝑗𝐴) = (𝑎𝑑𝑗𝐴) A = |𝐴|𝐼𝑛 

Proof: Let B = 𝑎𝑑𝑗𝐴 and C = A (𝑎𝑑𝑗𝐴) 

 If B = [𝑏𝑖𝑗]𝑛and C = [𝑐𝑖𝑗]𝑛 , then  𝑐𝑖𝑝 = ∑ 𝑎𝑖𝑗𝑏𝑗𝑝 = ∑ 𝑎𝑖𝑗𝑏𝑝𝑗
𝑛
𝑗=1

𝑛
𝑗=1  

 ∴ 𝑐𝑖𝑝 = {
0 𝑖𝑓 𝑖 ≠ 𝑝

|𝐴| 𝑖𝑓 𝑖 = 𝑝
 

(used of a theorem about the expansion of the determinant.) 

Therefore, A (𝑎𝑑𝑗𝐴) = |𝐴|𝐼𝑛 

Similarly, it can be proved that (𝑎𝑑𝑗𝐴) A = |𝐴|𝐼𝑛 

Thus if |𝐴| ≠ 0 then      
𝐴.𝑎𝑑𝑗𝐴

|𝐴|
= 

𝑎𝑑𝑗𝐴.𝐴

|𝐴|
= 𝐼𝑛 

Therefore, 𝐴−1 =
𝑎𝑑𝑗𝐴

|𝐴|
.  

➢ Example: Find 𝐴−1for the matrix A = [
2 1 4
4 3 1
1 2 4

]. 

Solution: - Here A = [
2 1 4
4 3 1
1 2 4

] 

 

det A = 2(12-2) -1(16-1) +4 (8-3) = 20 – 15 + 20 = 25 ≠0 

 

𝐴11 = (−1)1+1 [
3 1
2 4

]  = 10, A12 =(−1)1+2 |
4 1
1 4

| = -15   

 A13 =(−1)1+3 |
4 3
1 2

|  = 5, A21 =(−1)2+1 |
1 4
2 4

|  ) = 4, 

 A22 =(−1)2+2 |
2 4
1 4

|  =4, A23 =(−1)2+3 |
2 1
1 2

|  =  -3, 

 A31 =(−1)3+1 |
1 4
3 1

|  = -11, A32 =(−1)3+2 |
2 4
4 1

|  = 14, 

 A33 =(−1)3+3 |
2 1
4 3

| = 2 

∴ 𝑎𝑑𝑗𝐴 = [
10 4 −11

−15 4 14
5 −3 2

]   
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Therefore, 𝐴−1 =
𝑎𝑑𝑗𝐴

|𝐴|
.  = 

1

25
[

10 4 −11
−15 4 14
5 −3 2

] 

 

        Thus, we get  𝐴−1 =
1

25
[

10 4 −11
−15 4 14
5 −3 2

] 

 

Check: - we know that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛 

 

So, 𝐴𝐴−1 = [
2 1 4
4 3 1
1 2 4

] .

[
 
 
 
 

10

25

4

25
−

11

25

−
15

25

4

25

14

25
5

25
−

3

25

2

25 ]
 
 
 
 

 

 

=

[
 
 
 
 
 
20 − 15 + 20

25

8 + 4 − 12

25

−22 + 14 + 8

25
40 − 45 + 5

25

16 + 12 − 3

25

−44 + 42 + 2

25
10 − 30 + 20

25

4 + 8 − 12

25

−11 + 28 + 8

25 ]
 
 
 
 
 

= [
1 0 0
0 1 0
0 0 1

] =  𝐼3 

 

Some properties of inverse: 

 

➢ Theorem: If A and B are invertible matrices of order n, then prove that  

(AB)-1 = B-1A-1. 

Proof: (AB) (B-1A-1) = A(B B-1 )A-1 = A(𝐼𝑛
 )A-1 = AA-1 =𝐼𝑛 

And (B-1A-1) (AB)  = B(A-1 A)B-1 = B(𝐼𝑛
 )B-1 = BB-1 =𝐼𝑛 

Thus, we get (AB)  (B-1A-1) = 𝐼𝑛=(B-1A-1) (AB)   

∴ (B-1A-1) = 𝐼𝑛(AB)-1=(AB)-1. 

This prove that (B-1A-1) = AB)-1. 

 

➢ Theorem: If A is an invertible square matrix of order n and B and C are   

matrices of the order n×p, then prove that  AB=AC implies B = C. 

➢ Proof:  Here A is an invertible square matrix of order n and B and C are   

matrices of the order n×p is given 
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Now, AB=AC 

 ⇒ A-1AB=A-1AC multiple A-1 on both side 

⇒ (A-1A)B=(A-1A)C 

⇒ (𝐼𝑛)B=(𝐼𝑛)C 

⇒ B = C 

This prove that  AB=AC implies B = C. 

 

➢ Theorem: If A is an invertible square matrix of order n then prove  

that  (AT)-1 = (A-1)T . 

Proof:  Here A is an invertible square matrix of order n is given. 

Now,we have AA-1 = A-1A = I 

Taking transposes, we obtain  

(A)T(A-1 )T= (A-1 )T(A)T = IT =I   

⟺ (A-1 )T is the inverse of AT   

⇒ (A)T(A-1 )T= I 

⇒ (AT)-1 = (A-1)T. 

 

➢ Theorem: If A is an invertible square matrix of order n then prove  

that (a) (A-1)-1 = A.  (b) (�̅�)−1 = (𝐴𝑇̅̅ ̅̅ ̅) (c) (A*)-1 =(A-1)* 

Proof: (a) Now,we have AA-1 = A-1A = I 

Taking inverses, we obtain  

(A)-1(A-1 )-1= (A-1 )-1(A)-1 = I-1 =I   

⟺ (A-1 )-1 is the inverse of A-1   

 ⇒ (A)-1(A-1 )-1 = I 

i.e. If we take (A-1 )-1(A)-1 =I  thus we get , (A-1 )-1=I /(A)-1   

⇒ (A-1)-1 = AI =A . 

 

Similary you can prove (b) and (c) . 
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The row and column rank: 

Definition:- linear combination: 

If 𝛼1, 𝛼2,𝛼3, ….,𝛼𝑛 are scalars (real or complex) and if C1, C2, C3, ….,Cn are 

column vectors or column matrices, then 𝛼1C1+𝛼2C2+𝛼3C3+ ….+𝛼𝑛Cn is called 

linear combination of  C1, C2, C3, ….,Cn. 

Similarly, If 𝛽1, 𝛽2,𝛽3, ….,𝛽𝑛 are scalars (real or complex) and if R1, R2, R3, 

….,Rn are Row vectors or Row matrices, then 𝛽1R1+𝛽2R2+𝛽3R3+ ….+𝛽𝑛Rn is 

called linear combination of R1, R2, R3, ….,Rn. 

Definition: - Linearly independent (L.I.): - 

A set { u1, u2, u3, ….,un} of vectors is said to be linearly independent(L.I.) if  

the linear combination 𝛼1u1+𝛼2u2+𝛼3 u3+ ….+𝛼𝑛un = 0 with all  scalars 𝛼1, 𝛼2,𝛼3, 

….,𝛼𝑛 zero. i.e. all of the 𝛼′𝑠is zero. 

i.e. 𝛼1 = 0, 𝛼2 = 0,𝛼3 = 0, ….,𝛼𝑛 = 0. 

Note: - Here u1, u2, u3, …., un may be column vectors or row vectors 

Definition: - Linearly dependent (L.D.): - 

A set {u1, u2, u3, …., un} of vectors is said to be linearly dependent (L.D.) if  

the linear combination 𝛼1u1+𝛼2u2+𝛼3 u3+ …. + 𝛼𝑛un = 0 with at least one of   

𝛼1, 𝛼2,𝛼3, ….,𝛼𝑛 is not zero. i.e. all of the 𝛼′𝑠 is not zero. 

Let us suppose that 𝛼3 ≠ 0 

i.e. 𝛼1 = 0, 𝛼2 = 0,𝛼3 ≠ 0, ….,𝛼𝑛 = 0. 

Note: - Here u1, u2, u3, …., un may be column vectors or row vectors. 

 

Example: - Let A = [
1 0 1
2 0 0
0 1 1

] then show that it is linearly independent. 
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Solution: - Let C1=[
1
2
0
], C2= [

0
0
1
]and C3=[

1
0
1
] be three column vectors Then  

we have 𝛼, 𝛽, 𝛾 ∈ 𝑅 such that 𝛼 [
1
2
0
]+𝛽 [

0
0
1
] +𝛾 [

1
0
1
] = [

0
0
0
] 

𝛼  + 𝛾  = 0, 2 𝛼 = 0,  𝛽  + 𝛾  = 0 

Thus we get   = 0,   = 0 and   = 0 

Given column vector are linearly independent. 

Let R1= (1, 0,1), R2= (2, 0, 0) and R3= (0, 1, 1) be three row vectors Then  

we have 𝛼, 𝛽, 𝛾 ∈ 𝑅 such that 𝛼 (1, 0,1)+𝛽 (2, 0, 0) +𝛾 (0, 1, 1) = (0, 0, 0)= 0 

 𝛼  + 2𝛽   = 0, 𝛾  = 0, 𝛼  + 𝛾  = 0 

Thus we get   = 0,   = 0 and   = 0 

Given row vector are linearly independent. 

Example: - Let A = [
1 1 1
1 1 0
1 0 0

] then show that it is linearly independent. 

Solution: - Let C1=[
1
1
1
], C2= [

1
1
0
]and C3=[

1
0
0
] be three column vectors Then  

we have 𝛼, 𝛽, 𝛾 ∈ 𝑅 such that 𝛼 [
1
1
1
]+𝛽 [

1
1
0
] +𝛾 [

1
0
0
] = [

0
0
0
] 

𝛼  + 𝛽 + 𝛾 = 0,  𝛼 + 𝛽 = 0,  𝛼 = 0 

Thus we get   = 0,   = 0 and   = 0 

Given column vector are linearly independent. 
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Let R1= (1, 1,1), R2= (1, 1, 0) and R3= (1, 0, 0) be three row vectors Then  

we have 𝛼, 𝛽, 𝛾 ∈ 𝑅 such that 𝛼 (1, 1,1) +𝛽 (1, 1, 0) +𝛾 (1, 0, 0) = (0, 0, 0) 

 𝛼  + 𝛽 + 𝛾 = 0,  𝛼 + 𝛽 = 0,  𝛼 = 0 

Thus we get   = 0,   = 0 and   = 0 

Given row vector are linearly independent. 

Example: - Let A = [
1 2 3 4
2 4 6 8
3 6 9 12

] then show that it is linearly dependent. 

Solution: - Let C1=[
1
2
3
], C2= [

2
4
6
], C3=[

3
6
9
] and C4=[

4
8
12

] be four column vectors 

Then  

we have 𝛼, 𝛽, 𝛾, 𝛿 ∈ 𝑅 such that 𝛼 [
1
2
3
]+𝛽 [

2
4
6
] +𝛾 [

3
6
9
] + 𝛿 [

4
8
12

]= [
0
0
0
] 

𝛼  +2 𝛽 +3 𝛾 + 4 𝛿 = 0,  2𝛼+4 𝛽 +6𝛾 + 8 𝛿 = 0,  3𝛼  +6 𝛽 +9 𝛾 + 12 𝛿 = 0 

𝛼  +2 𝛽 +3 𝛾 + 4 𝛿 = 0,  𝛼  +2 𝛽 +3 𝛾 + 4 𝛿 = 0,  𝛼  +2 𝛽 +3 𝛾 + 4 𝛿 = 0,  

Thus, we get 𝛼  =-2 𝛽 -3 𝛾 - 4 𝛿 

 if we take  𝛽 =1 𝛾 =1, 𝛿 = 1 then we get, 𝛼 = -9 

Here 𝛼≠ 0, 𝛽≠ 0, 𝛾≠0 and 𝛿 ≠0 

Given column vector are linearly dependent. 

Let R1= (1, 2,3,4), R2= (2, 4, 6,8) and R3= (3, 6, 9,12) be three row vectors Then  

we have 𝛼, 𝛽, 𝛾 ∈ 𝑅 such that 𝛼 (1, 2,3,4) + 𝛽 (2, 4, 6,8) + 𝛾 (3, 6, 9,12) = (0, 0, 0) 

𝛼  +2 𝛽 +3 𝛾 = 0,  2𝛼+4 𝛽 +6𝛾  = 0,  3𝛼  +6 𝛽 +9 𝛾  = 0 and 4𝛼  +8 𝛽 +12 𝛾 = 0 

𝛼  +2 𝛽 +3 𝛾 = 0, 𝛼  +2 𝛽 +3 𝛾 = 0, 𝛼  +2 𝛽 +3 𝛾 = 0 and 𝛼  +2 𝛽 +3 𝛾 = 0 

𝛼  =-2 𝛽 -3 𝛾 
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if we take  𝛽 =1 𝛾 =1 then we get, 𝛼 = -5 

Thus, we get 𝛼≠ 0, 𝛽≠ 0 and  𝛾≠0  

Given Row vector are linearly dependent. 

 

➢ Definition: - Row rank: 

The maximum number of linearly independent rows of a matrix is called 

row rank of the matrix. 

➢ Definition: - Column rank: 

The maximum number of linearly independent columns of a matrix is 

called rank of column he matrix. 

➢ Definition: echelon form: 

 any matrix A or its row equivalent form satisfies the following conditions then 

'A' is said to be in the row reduced echelon form :  

(i) The first non-zero entry in non- zero row is 1.  

(ii) If a column contains the first non- zero entry of any row. Then every other 

entry in that column is zero.  

(iii) If the matrix has the zero rows (the rows containing only zero) then all zero 

must occur below all the non-zero rows. 

(iv)Let there be r non-zero rows. If the first non-zero entry of the ith non-zero row 

occurs in the column (i = I, 2, .., r) then k1<k2<k3<….<kr. 

 

A = [
1 0 0 4
0 1 0 8
0 0 1 12

] , B = [
1 0 0
0 1 0
0 0 1

] , C = [

1 0 0 4
0 1 0 8
0 0 1 −1
0 0 0 1

] ,  

D = [

0 0 0 4
0 1 0 8
0 0 1 −1
0 0 0 1

] ,  E =[

0 0 0 4
0 0 0 8
0 0 1 −1
0 0 0 0

] are in the row reduced echelon form. 
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Theorem: If the matrix is in the row reduced echelon form, then the number 

of non-zero rows is the row rank of the matrix. 

Theorem: The row rank of a matrix A is equal to the row rank of row 

reduced echelon matrix B obtained form A. 

Proof: matrix B is obtained from A by applying the row elementary operations on 

A. 

 Therefore, it is sufficient to show that operations on the matrix does not after the 

rank or A. If we interchange any two rows of A, then the number of linearly 

independent rows A remains the same.  

Similarly, the multiplication any row of A by a non-zero number does not alter the 

number of linearly independent rows of the matrix A.  

Let us now consider the third elementary operation. Suppose the row matrix R1 is 

multiplied with α and added to the row matrix R2.  Let the remaining row matrices 

of A are R3, R4 ......, Rm.  

It can be seen that the sets P = {R1. R2, …, Rm} and the set Q= {R1. R2 +α R1, …, 

Rm} are of the same nature i.e. If P is linearly independent, then Q is also linearly 

independent and if p is linearly dependent then Q is also linearly dependent.  

Therefore, the third elementary operation also does not alter the number of 

independent rows of A. Thus, the theorem is proved.  

 

Note: 

Let the matrix A be in the form of row reduced echelon form. Draw horizontal and 

vertical lines in such away that under these lines and or left-hand sides of these 

lines only zeros occur. Also, at the point., where the vertical line occurs after the 

horizontal line only 1 occurs. Such point are called steps. 

 

A =

[
 
 
 
 
0 1 2 0 0 0
0 0 0 1 3 2
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0]

 
 
 
 

5×6

Here A is a 5 × 6 matrix with four steps. 

Theorem  : If a matrix is in the row reduced echelon form, then  its column rank is 

equal to the number of steps in the matrix. 

Proof : Let the matrix A be in row reduced echelon form with p steps. The column 

before the first step is a zero column matrix and each row after last step is a zero 

row matrix.  
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Therefore, the non-zero column matrices are elements or Rp. Obviously, the 

column rank of A is P or a natural number was then P. It should be noted that each 

step gives us a non-zero vector. The ser of these vectors is linearly independent. 

Hence the column rank of A is or greater than the column rank of A is p. 

 

Example: find the rank of the matrix A =[
2 3 4 −1
5 2 0 −1

−4 5 12 −1
] 

Solution:  r(A)≤3 
Let R1= (2, 3,4,-1), R2= (5, 2, 0,-1) and R3= (-4, 5, 12,-1) be three row vectors 

Then  

we have 𝛼, 𝛽, 𝛾 ∈ 𝑅 such that 

 𝛼 (2, 3,4, -1) + 𝛽(5, 2, 0, -1) + 𝛾 (-4, 5, 12, -1) = (0, 0, 0) 

2𝛼  +5𝛽 -4𝛾 = 0,  3𝛼+2𝛽 +5𝛾  = 0,  4𝛼+12𝛾  = 0 and -𝛼 - 𝛽- 𝛾 = 0 

2𝛼  +5 𝛽 -4 𝛾 = 0,___________________(1)  

 3𝛼+2 𝛽 +5𝛾  = 0, _________________(2) 

 4𝛼   +12 𝛾  = 0 __________________(3) 

-𝛼  - 𝛽 - 𝛾 = 0 ___________________(4) 

From equations (1) and (4) 

   2α + 5𝛽 − 4𝛾 = 0  
−2α − 2𝛽 − 2𝛾 = 0  
             3𝛽 − 6𝛾 = 0     ⇒  𝛽 − 2𝛾 = 0  __________(5) 
 
From equations (2) and (4) 

    3𝛼 + 2 𝛽 + 5𝛾  =  0 

−3α − 3𝛽 − 3𝛾 = 0  
             − 𝛽 + 2𝛾 = 0     ⇒  𝛽 − 2𝛾 = 0  __________(6) 
 
From equations (3) and (4) 

4𝛼 + 0 𝛽 + 12𝛾  =  0 

−4α − 4𝛽 − 4𝛾 = 0  
             − 4𝛽 + 8𝛾 = 0     ⇒  𝛽 − 2𝛾 = 0 __________(7)  
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From equations (5), (6) and (7) we get,  𝛽 − 2𝛾 = 0 ⇒ 𝛽 = 2𝛾 

Put 𝛽 = 2𝛾  in equation (4) then we get  𝛼  = 𝛾. 

Thus, if we take  𝛾 = 1.then we get 𝛽 = 2 and 𝛼  =1  

Thus, we get 𝛼≠ 0, 𝛽≠ 0 and  𝛾≠0  

Given Row vector are linearly dependent. 

Now let remove R3 Row and check the linearly independent or dependent for R1= 

(2, 3,4,-1), R2= (5, 2, 0,-1) 

we have 𝛼, 𝛽 ∈ 𝑅 such that 

 𝛼 (2, 3,4, -1) + 𝛽(5, 2, 0, -1) = (0, 0, 0) 

2𝛼  +5 𝛽 = 0,  3𝛼+2 𝛽 = 0,  4𝛼   = 0 and -𝛼  - 𝛽  = 0 

we get, 𝛼 = 0 𝛽 = 0,   𝛾 = 0  

Given Row vector R1= (2, 3,4, -1), R2= (5, 2, 0, -1) are linearly independent. 

 Rank of matrix A =  r(A) = 2. 

(OR) 

A =[
2 3 4 −1
5 2 0 −1

−4 5 12 −1
] 

 
Solution:  r(A)≤3 

 

Let C1= [
2
5

−4
], C2= [

3
2
5
]and C3= [

4
0
12

]be three column vectors Then  

we have 𝛼, 𝛽, 𝛾 ∈ 𝑅 such that 

 𝛼 [
2
5

−4
] + 𝛽 [

3
2
5
] + 𝛾 [

4
0
12

]= [
0
0
0
] 
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2𝛼  +3𝛽 +4𝛾 = 0,  5𝛼+2𝛽 +0𝛾  = 0,  and -4𝛼  + 5𝛽 +12𝛾 = 0 

2𝛼  +3𝛽 +4𝛾 = 0,___________________(1)  

 5𝛼+2𝛽    = 0, _________________(2) 

-4𝛼  + 5𝛽 +12𝛾 = 0 __________________(3) 

From equations (1) and (3) 

   6α + 9𝛽 + 12𝛾 = 0  
   4α − 5𝛽 − 12𝛾 = 0  
  10α + 4𝛽           = 0     ⇒  5α + 2𝛽 = 0  __________(4) 
 
From equations (2) and (4) 

  we get 5α + 2𝛽 = 0  ⇒ α = −
2

5
𝛽 

Put α = −
2

5
𝛽  in equation (1) then we get  𝛾 = −

11

20
𝛽  . 

Thus, if we take  𝛽 = 1.then we get 𝛾 = −
11

20
 and 𝛼  = −

2

5
  

Thus, we get 𝛼≠ 0, 𝛽≠ 0 and  𝛾≠0  

Given column vectors are linearly dependent. 

Now let remove C3 column and check the linearly independent or dependent for 

C1= [
2
5

−4
], C2= [

3
2
5
] 

we have 𝛼, 𝛽 ∈ 𝑅 such that 

 𝛼 [
2
5

−4
] + 𝛽 [

3
2
5
] = [

0
0
0
] 

2𝛼  +3𝛽 = 0,  5𝛼+2 𝛽 = 0 and -4𝛼  +5𝛽  = 0 

we get, 𝛼 = 0 , 𝛽 = 0 
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Given column vectors C1= [
2
5

−4
], C2= [

3
2
5
]are linearly independent. 

 Rank of matrix A = r(A) = 2. 

 

Example: find the rank of the matrix A =[
4 3 0 −2
3 4 −1 −3

−7 −7 1 5
] 

Solution:  r(A)≤3 
Let R1= (4, 3,0, -2), R2= (3, 4, -1, -3) and R3= (-7, -7, 1,5) be three row vectors 

Then  

we have 𝛼, 𝛽, 𝛾 ∈ 𝑅 such that 

 𝛼 (4, 3,0, -2) + 𝛽(3, 4, -1, -3) + 𝛾 (-7, -7, 1,5) = (0, 0, 0) 

4𝛼  +3 𝛽 -7 𝛾 = 0,  3𝛼+ 4 𝛽 -7𝛾  = 0,  0𝛼 - 𝛽  + 𝛾  = 0 and -2𝛼  -3 𝛽 +5 𝛾 = 0 

4𝛼  +3 𝛽 -7 𝛾 = 0___________________(1)  

 3𝛼+ 4 𝛽 -7𝛾  = 0, _________________(2) 

0𝛼 - 𝛽  + 𝛾  = 0  __________________(3) 

-2𝛼  -3 𝛽 +5 𝛾  = 0 ___________________(4) 

From equations (1) and (4) 

   4𝛼  +3 𝛽 -7 𝛾 = 0 

−4α − 6𝛽 + 10𝛾 = 0  

          −3𝛽 + 3𝛾 = 0     ⇒  𝛽 − 𝛾 = 0  __________(5) 

 

From equations (2) and (4) 

    6𝛼+ 8 𝛽 -14𝛾  = 0 

−6α − 9𝛽 + 15𝛾 = 0  

             − 𝛽 + 𝛾 = 0     ⇒  𝛽 − 𝛾 = 0  __________(6) 

 

From equations (3) 

⇒  𝛽 − 𝛾 = 0 __________(7)  
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From equations (5), (6) and (7) we get,  𝛽 − 𝛾 = 0 ⇒ 𝛽 = 𝛾 

Put 𝛽 = 𝛾  in equation (4) then we get  𝛼  = 𝛾. 

Thus, if we take  𝛾 = 1.then we get 𝛽 = 1 and 𝛼  =1  

Thus, we get 𝛼≠ 0, 𝛽≠ 0 and  𝛾≠0  

Given Row vector are linearly dependent. 

Now let remove R3 Row and check the linearly independent or dependent for R1= 

(4, 3,0, -2), R2= (3, 4, -1, -3)  

we have 𝛼, 𝛽 ∈ 𝑅 such that 

 𝛼 (4, 3,0, -2)+ 𝛽(3, 4, -1, -3) = (0, 0, 0) 

4𝛼  +3 𝛽 = 0,  3𝛼+4 𝛽 = 0,  − 𝛽   = 0 and -2𝛼  -3 𝛽  = 0 

we get, 𝛼 = 0 𝛽 = 0,   𝛾 = 0  

Given Row vector R1= (4, 3,0, -2), R2= (3, 4, -1, -3)are linearly independent. 

 Rank of matrix A =  r(A) = 2. 

Solution:  r(A)≤3 

 

Let C1= [
2
5

−4
], C2= [

3
2
5
]and C3= [

4
0
12

]be three column vectors Then  

we have 𝛼, 𝛽, 𝛾 ∈ 𝑅 such that 

 𝛼 [
2
5

−4
] + 𝛽 [

3
2
5
] + 𝛾 [

4
0
12

]= [
0
0
0
] 

2𝛼  +3𝛽 +4𝛾 = 0,  5𝛼+2𝛽 +0𝛾  = 0,  and -4𝛼  + 5𝛽 +12𝛾 = 0 

2𝛼  +3𝛽 +4𝛾 = 0,___________________(1)  

 5𝛼+2𝛽    = 0, _________________(2) 

-4𝛼  + 5𝛽 +12𝛾 = 0 __________________(3) 



32 
 

From equations (1) and (3) 

   6α + 9𝛽 + 12𝛾 = 0  
   4α − 5𝛽 − 12𝛾 = 0  
  10α + 4𝛽           = 0     ⇒  5α + 2𝛽 = 0  __________(4) 
 
From equations (2) and (4) 

  we get 5α + 2𝛽 = 0  ⇒ α = −
2

5
𝛽 

Put α = −
2

5
𝛽  in equation (1) then we get  𝛾 = −

11

20
𝛽  . 

Thus, if we take  𝛽 = 1.then we get 𝛾 = −
11

20
 and 𝛼  = −

2

5
  

Thus, we get 𝛼≠ 0, 𝛽≠ 0 and  𝛾≠0  

Given column vectors are linearly dependent. 

Now let remove C3 column and check the linearly independent or dependent for 

C1= [
2
5

−4
], C2= [

3
2
5
] 

we have 𝛼, 𝛽 ∈ 𝑅 such that 

 𝛼 [
2
5

−4
] + 𝛽 [

3
2
5
] = [

0
0
0
] 

2𝛼  +3𝛽 = 0,  5𝛼+2 𝛽 = 0 and -4𝛼  +5𝛽  = 0 

we get, 𝛼 = 0 , 𝛽 = 0 

Given column vectors C1= [
2
5

−4
], C2= [

3
2
5
]are linearly independent. 

 Rank of matrix A = r(A) = 2. 

 


