SEM-V
MAT 301: Linear Algebra- 1l (Theory)
Unit-1

Definition:- Composition of linear maps:-
Let U, V and W are vector spaces. Let T : U—V and

S : V>W be two linear maps. Then the composition
SoT : U—-W is defined by SoT(u) = S(T(u)) for all

ueU. Here SoT is called the composition of S and T.

Definition:- Linear transformation :-

Suppose U and V are vector spaces either both real or both complex.
Then the map T: U— V is said to be a linear map (transformation,
operator), if

(i) T(@Ur+u)=T(uy)+T(uz) forall,u;,u; el

(i) T(au)=aT(u) forall,ueU andall scalarsa .



Example:- Show that SoT is a linear map.
Solution:- Let u,u2e U and « is any scalar. Then
(1) SoT(u1 + u2) = S(T(uz + uz)) [© by definition of composition]
= S(T(uz) + T(u2)) [GT is linear map]
= S(T(u1) )+ S(T(u2)) [©S is linear map]
= S0T(u1) +So T(u2) [G by definition of composition]

(i) SoT(a u1) = S(T( e u1) ) [® by definition of composition]
S(aT(u1))  [OTis linear map]

a S(T(uy) [®S is linear map]

a S0T(u1) [®by definition of composition]

From (i) & (ii) SoT is a linear map
i.e. The composition of two linear map is again a linear map.



Example:- Let a linear map T : V3—V4 be defined by
T(e1) =(1,1,0,0), T(e2) = (1, -1, 1, 0) and T(e3) = (0, -1, 1, 1), where
{e1,e2,e3} is the standard basis for Vs, and let a linear map S : V4— V2 be
defined by
S(f1) = (1,0), S(f2) = (1, 1), S(fs) = (1, -1) and S(fs) = (O, 1), where
{f1,f2,f3,f4} is the standard basis for V4 . Then find SoT: V3— V..
Solution:- Since
SoT(e1) = S(T(e1) =S(1, 1, 0,0) = S(f1 + f2) = S(f1) + S(f2) = (1,0)+ (1, 1) =
(2.1)
Now
SoT(e2) = S(T(e2)) =S(1, -1, 1, 0) = S(f1 - f +f3) = S(f1) - S(f2) + S(f3) =
(1,0-(1,1)+(1,-1) =(1,-2
Now
SoT(es) = S(T(e3)) =S(0, -1, 1, 1)= S(-f2 + f3 +f4) = -S(f2) + S(f3) + S(fs) =
-(1,1)+(1,-1)+(0,1)=(0,-1)

Note:-
%+ We can write ST for SoT and call it the product of S and T rather than the
composition of S and T.
% If ST defined then TS need not be defined. Even if both are defined, they need
not be equal. Thus the commutative law of the product is not in general
satisfied. The other laws of multiplication are easily seen to hold.

Theorem:- LetT1,T2 be linear maps from U to V. Let Sy, S, be linear maps from V to
W. P be linear maps from W to Z, where U, V, W and Z are vector spaces
over the same field of scalars. Then prove that

(@) S1(T1+ T2 ) =S1T1 + SiTo.

(b) (S1+S2) T1=S:1T1 + SpTa.

(c) P(S1T1) =P(Sy)Tx.

(d) (& S1)T1 = a (S1T1) =S1(a T1) , where « is a scalar.
@) IvT1=Tiand T1 lu=T:

Proof :(a)
Since Ty and T2 be linear maps fromUto V.
.e. T1: UV T2: UV
. T1 + T2 be linear maps from U to V.
i.e. Tt + T2: U—V be linear maps.
Also S; be linear maps from V to W.
I.e. S1: V>W be linear maps.



. S1 (T1 + T2) be linear maps from U to W.

I.e. S1 (T1 + T2): U—>W be linear maps and S1T1 + S1T> is also defined.
- S1(T1+ T2) and S1T1 + S1T2 have the same domain U.

Let ue U then

Si[(T1 + T2)]J(u) = Sa[(T1 + T2) (u)] [© by definition of product]
= S1[T1(u) + T2 (U)] [6 by sum of linear map]
= S1(T1(u)) + S1 (T2 (u)) [© S1 is linear map]
= (S1Ty)(u) + (S1T2)(u) [© by definition of

commutative]
=(S1T1 + S1T2)(u) [® by definition of sum of linear
map]
This proved that S1(T1 + T2 ) =S1T1 + S1T».

Proof of (b) is similar to (a).

(© Since P :W —Z ,S;1 : V>W be linear maps and T1 : U—V be linear maps.
. S1T1: U—W be linear maps.
~.P(S1T1): U—Z be linear maps.
. the domain of P(S1T1) and P(S1)T1 is common.
Let ue U then
[P(S1T1)](u) =P[(S1T1) (u)] = P[(S1{T1 (u)}] = {(PS1)T1 (u)} = P{S1)T1 (u)}

Hence, images of u under the two functions are same.
. we get
P(SlTl) = P(Sl)Tl
(d) Proof (d) is simple.
(e) Domain of IvT1 = domain of T1=U. So the functions
IvTrand T are same
(IvT1)(u)= Iv(Tx(u))
Similarly T1ly = Ta.
= Ta(u)
SovTi=Ta
Note :- We know that T : U—V be a nonsingular linear map, i.e. T is one-one and
onto. Then T : VU exists and is linear. Further TT™ =Iy and TXT = Iu.

Theorem:- T : U-V and S:V —W be a linear maps. Then
(@)  IfSand T are nonsingular, then ST is nonsingular and (ST) = TS,
(b) If ST is one-one, then T is one-one..
(c) If ST is onto, then S is onto.
(d) If ST is nonsingular, then T is one-one and S is onto.
(e) If U, V, W are of the same finite dimension and ST is nonsingular, then
both S and T are nonsingular.

Proof: Since S is nonsingular. S exists and SS* = lw and SIS = I..
Since T is nonsingular. T exists and TT* = Iy and T1T = Iu.



Then we have (ST)( T2S%)= (S(T( TS ) = (S(TT)S) = S(IvS?Y) =SS =
Iw.
" Similarly,

(TISH(ST) = (THSYST)) = (THSIS)T) = T-10IVT) =TT =1y

Hence ST is nonsingular and (ST)* = T-1S,

The Space L(U, V)

Definition:- Sum of two linear maps:
Let T: U->V and S : U—V be two linear transformations. The linear map
M: U—YV defined by M(u) = S(u) + T(u) for all ue U is called the sum of
two linear map Sand T.

Example:- Let T: U—V and S : U—V be two linear transformations. Then prove that
M: U—V defined by M(u) = S(u) + T(u) for all ue U linear map.

Solution:- Let uz,u2€ U then

M(uzt+ u2) = S(ust u2) + T(ur+ uz) [® by definition of M]

= (S(uz)+ S(u2) ) + (T(ur)+ S(u2)) [6© Sand T linear map]
S M(urt uz) = (S(u)+ S(uz) ) + (T(u)+ S(u2)) (i)
And M(u1)+M(uz2) = (S(u1)+ S(uz) ) + (T(u2)+ S(uz)) [® by definition of M]
= (S(u)+ S(u2) ) + (T(ur)+ S(u2))

S M(u)+M(u2) = (S(un)+ S(uz) ) + (T(u)+ S(u)) (i)

From (i) & (ii)
M(u1+ uz) = M(u1)+M(u2) (@)
Again let « eR and ure U then

M( e u1)= S(a u)+ T(«a uy) [® by definition of M]
= a S(u1)+ a T(u) [6© Sand T linear map]
= a (S(uy)+ T(ur))
—a M(ul)

S M(u1)= a M(uy) (b)

From (a) & (b)
M: U—V be a linear map.

Definition:- Scalar multiple of a linear map:
Let S:U—V be linear transformation and « be any scalar. Then the linear
map P: U—V defined by P(u) = « (S(u)) forallue U is called Scalar
multiple of a linear map Sand « .

Example:- Let S: U—V be linear transformation and « be any scalar. Then prove
that
P: U—V defined by P(u) = « (S(u)) for all ue U is linear map.
Solution:- Let ui,u2e U and a be any scalar then
P(utt u2) = a (S(u1+ u2)) [® by definition of P]
= a (S(u1)+ S(u2)) [® Sis linear map]



= a (S(u))+ a (S(u2))

= P(us)+ P(u2)
- P(uit uz) = P(u1)+ P(u2) 0]
Again A be any scalar and ue U then
P(Au) = a (S(Au) [® by definition of P]
= a (AS(u)) [® Sis linear map]
= A(a (S(u)))
= A P(u)
~P(Au)=4 P(u) (i)
From (i) & (ii)
P: U—-V is linear map.

Example:- Let T: Vs—Vzand S : V3— 'V be two linear transformations
defined by T(x1, X2, X3) = (X1 — X2, X2 + X3) and S(X1, X2, X3) = (2X1, X2 - X3)
then find (S +T) and « (S).
Solution:- Since (S +T) : V3—V2 is given by
(S +T) (X1, X2, X3) = S(X1, X2, X3) + T(X1, X2, X3)
= (2X1, X2 - X3) + (X1 — X2, X2 + X3)
= (3X1- X2, 2X2)
And a S: V3—V; is given by
a (S) (X1, X2, X3) = a (S(X1, X2, X3) )
a (2X1, X2 - X3)
(Za X1, @ (Xz - X3))

Example:- Let T: Va3—V3zand S : V3—V3 be two linear transformations
defined by T(e1) = (e1 + e2), T(e2) =es, T(es) = (e2—e3); S(e1) =es,
S(e2) = (2e2 —e3) and S(e3) =0 then find (S +T) and 2T
Solution:- Since (S +T) : V3—V3 is given by
(S+T) (e1) =S(e1) + T(e1) =e3 +(e1 +€2) =e1 +e2+ €3
(S+T) (e2) = S(e2) + T(e2) =(2e2 —e3)+es =2e2
(S+T) (e3) = S(e3) + T(e3) =0 +(e2 —e3) =€2 - €3
And 2T: V3— V3 is given by
(2T) (e1) = 2T(e1) =2(e1 + €2)
(2T) (e2) = 2T(e2) = 2e3
(2T) (e3) = 2T(e3) = 2(e2 — €3)

Note: - The set of all linear transformations from U to V is denoted by L(U, V). Here

U
and V are vector spaces.

Theorem: The set L(U, V) of all linear maps from U to V together with the

operations
of addition and scalar multiplication as defined above is a vector space.

Proof: We have already seen that the sum of two linear maps from U to V is again a
linear map from U to V. Hence L(U, V) is closed under addition. Also a scalar



multiple of a linear map is again a linear map. Hence L(U, V) is closed under
the operation of scalar multiplication.
Now we define zero linear map takes any vector of U into a zero vector V.
Negative of a linear map-T: U—V is defined by (-T)(u) = (-u)
The following properties are the consequence of these definitions.
If S, T, R are any linear maps belonging to L(U,V) and «, # any scalars then
(i) Addition in L is commutative.i.e. S+ T=T+S
(i)Addition in L is Associative. i.e. (S+T) + R=S+(T +R)
(iii) There exists an Oe L such that T + 0 = T. Here 0 is called identity element
for

addition.
(iv) For each TeL there exists —-TeL suchthat T + (- T) =0. Here (- T) is
called

Inverse element for addition
VM a(S+T=aS+aT
Vi (a+B)T=aT+ pT
(Vi) (aB)S=a(fS)=a pS
(viii) 1.S=S.
Hence L(U, V) satisfied all axioms for vector space so it is vector space.
i.e. the set of all linear transformation from U to the vector space V is a vector
space itself.

Operator Equation

Definition: Operator Equation:
Let T: U—V be a linear map from the vector space U to the vector space V.
the equation T(u) = vo ,Where v, is a fixed vector in V, is called an Operator
Equation.

Note:(i) if vo =0 i.e. T(u) = Oy then the equation is called homogenous (H) equation.
(ii) if vo = Oy i.e. T(u) = vo then the equation is called nonhomogenous (NH)
equation.
(iii) The set of solutions of the equation T(u) = 0 is the kernel of T i.e. N(T).

Theorem:- Let T: U—V be a linear map. Given vo # Oy in V, the nonhomogenous
(NH)
equation. T(u) = v, and the associated homogenous (H) equation T(u) = Oy
have the following properties:
€)) If vog R(T), then (NH) has no solution for u.

(b) If voe R(T) and (H) has trivial solution, namely, u = 0y, as its only
solution, then, (NH) has unique solution.
(c) If voe R(T) and (H) has a nontrivial solution, namely, a solution u # O,

then (NH) has infinite number of solutions. In this case if uo is a solution
of (NH), then the set of all solutions of (NH) is linear variety uo+K, where
K = N(T) is the set of all solutions of (H).
Proof:- (a) is obvious. Recall the definition of R (T).
(b) If voe R(T), then T (u) = vo has a solution.



If T (u) = Oy has only one solution, i.e. u = 0y, then N (T) = {0u},
i.e. T is one-one.
This means T (u) = vo cannot have more than one solution,
I.e. the solution of (NH) is unique.
(c) If T(u) = Ov has a nonzero solution , then N(T) = {Ou}.

Let uo € U be a solution of (NH) .

It exists because vo € R (T).

Then T (Uo) = Vvo.

Now if uxe N(T), then T(uotux) =T (uo) + T (ux)

=vo+ Oy
= VO

Therefore, uo +ux is a solution of (NH). This is true for every uxe N(T) and
since this letter has infinite number of elements in it, (NH) also has an infinite
number of solutions.
From this discussion it is obvious that uo + K, where K = N(T), is contained the
solution set of (NH).
Conversely, If w be any other solution of (NH) then
T(w)=vo= T (vo) or T(w - Uog) = Vo
i.e.w-ueN(T)=K
So w and up belong to the same parallel of K, namely uo + K.
Thus, the solution set of (NH) is precisely ug + K.

Note:- uo + K is the pre-image of vo.

Example:- Let D:C(0, 2 7 )— C(0, 2 =) be the linear differential operator .the operator
equation D(f)(x) = sin x.
Solution:- the associated homogeneous equation (H)is as D(f)(x)=0
The solution set of this equation is the set of all constant functions.
K = {f/f(x) =bforall xe(0, 27 ) and b a constant}
One solution of D(f)(x) = sin x is the function fo, where fo(x) = -cosx.
So the solution set is fo + K.
In other words, the set of all function g, where g(x) = -cos x + (a constant)

the solution set of D(f)(x) = sin x.

Note: To solve a nonhomogeneous operator equation (NH)
T(u) = vo,
Where T is linear operator,
We go through three steps:
Step 1. Form the associated homogeneous equation (H)
Step 2. Get all solutions of (H). It is the kernel of T, i.e. N(T).
Step 3. Get one particular solution uo of (NH).
Now the complete solution of (NH) is uo + N(T).

Examples of solving an operator equation:



Example-1 Let T: Vs—V3 be a linear transformation defined byT(e;) = % fi, T(ey) =

~fir T(es) = fo, T(es) = frand T(es) = 0. Where {e;, e,,e3,e4 €5} is the
standard basis for Vs and {fy, f>, f3} is the standard basis for V3 then solve
the equation T(u) = (1, 1, 0).
Solution: Frist calculate the value of T(u) i.e. T(xq, x5, X3, X4, xs) Here ue Vs.
Since T is a linear map
- T (xy, %2, X3, X4, x5) = 21 T(e1) + x3T(ez) + x3T(e3) + x,T(ey) +
xsT(es)

X1 %fl + xz%f1 + x3f; + x4f; + x5.0 (Put the given
values)

X1+Xx
(%)ﬁ + (x3+x4)f2 + 0f3
+
= (x12x21x3 + X4 ,0) (fl'f21f3)
T(le X2, x3; X4 xS) = (xlT-i_le x3 + Xq '0)
The associated homogeneous equation leads to the equations
Ie T(le X2, X3, Xg, x5) =0

X1+x
#=0,X3+x4=0.

Solving these, we get x, = —x; , x3 = —x, Thus, the kernel of T is the set
of all vectors of form(x;, —x4, x5, —x3, X5),

i.e. x; (1,—1,0,0,0) + x3(0,0,1, —1,0)+x5(0,0,0,0,1)

=~ N(T) = [(1,-1,0,0,0), (0,0,1,—1,0), (0,0,0,0,1)]

Now find T(u) = (1, 1, 0).

Since T(u) = T (xq, X5, X3, X4, X5) = (

#(1,1,0) = (222, x, +x,.,0)
.X'1+.X'2

Thus we get, = 1,x3+x,=1
Letustake x; = 2,x, =0,x3 =1,x, =0,xs = 0.

X1+X2

, X3 + Xy ,O)

Then we get one particular solution of T(u) = (1, 1, 0)isuo=(2, 0, 1, 0, 0)
So the complete solution of the equation T(u) = (1, 1, 0)

is the linear variety (2, 0, 1, 0, 0) + N(T)

i.e. Theset (2,0,1,0,0)+{(a,—a,b,—b,c)/a,b,c € R},

Which is same as {(a + 2),—a, (b + 1),—b,c)/a,b,c € R}

In other words: The T-pre-image (1, 1, 0) of is this linear variety.

Example-2 Let T: R®-R? be a linear transformation defined byT(xq,x,,x3) =
(x; + x5,2x, + x5 ) then solve the equation T(u) = (2, 4), ue R®.
Solution: Frist calculate the value of T(u) i.e. by T'(xq, x5, x3) = (1 + x2,2x5, + x3)
The associated homogeneous equation leads to the equations
i.e. T(xq,x5,x3) =0

X1 +x, =0,2x, +x3 = 0.
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Solving these, we get x; = —x, , x3 = —2x;,
Thus, the kernel of T is the set of all vectors of form (—x,, x,, —2x5,),
If we take —x, = aVa € R
N(T) =[(a, —a,2a)]
Now find T(u) = (2, 4), ue R®.
Since T(u) = T(xq, x5, x3) = (X1 + x5, 2%, + X3 )
2 (2,8) = (g + x5, 2x5 + x3)
Thusweget,x; +x, =2,2x, +x3 =4 =x;=2—2%x3,x3 =4 —2x,
Let us take x, = —1 thenwe get x; = 3,x3 = 6
Then we get one particular solution of T(u) = (2, 4) isuo = (3, -1, 6)
So the complete solution of the equation T(u) = (2, 4)
is the linear variety (3, -1, 6) + N(T)
i.e. Theset (3, -1, 6)+ {(a, —a, 2a)/a € R},
Which is same as {(a + 3),—(a + 1), (2a + 6)/a € R}
In other words: The T-pre-image (2, 4) of is this linear variety.

Example-3 Let T: R*—R?® be a linear transformation defined by T(xq, x5, X3, x4) =
(%, — x4,%, + x3,x3 — x4) then solve the equation T(u) = (1,2, 3), ue R
Solution: Frist calculate the value of T(u)
i.e. by T(xq,x5,%3,%4) = (X1 — X4, X5 + X3,X3 — Xy)
The associated homogeneous equation leads to the equations
i.e. T(xq1,%0,%3,%4) =0
X1 —%X4=0,x,+x3=0 x3—x, =0.
Solving these, we get x; = x4 , X, = —X3, X3 = X4
Thus, the kernel of T is the set of all vectors of form (x,, —x4, X4, X4)
If we take x, = avVa € R
N(T) =[(a,—a,a,a)] i.e. N(T) =[a(1,—-1,1,1)]
~N(T) =[(1,-1,1,1)]
Now find T(u) = (1,2, 3), ue R*
Since T(u) = T(xq, X, X3, X4) = (X1 — X4, X5 + X3,X3 — X4)
~(1,2,3) = (g — x4, %3 + X3, X3 — X4)
Thuswe get,x; —x, =1,x, +x3=2,x3—x, =3 =x;=14+x4,x, =
2—x3,x3 =3+ x4
NXy=2—-—3—x,=—1—x,
Let us take x, = 1 thenwe get x; = 2,x, = —2,x3 = 4
Then we get one particular solution of T(u) = (1,2, 3)is uo = (2, -2, 4,1)
So the complete solution of the equation T(u) = (1,2, 3)
is the linear variety (2, -2, 4,1)+ N(T)
i.e. Theset (2,-2,4,1)+{(a,—a,a,a)/a € R}
Which is same as {(a + 2),—(a + 2),(a + 4),(a + 1)/a € R}
In other words: The T-pre-image (2, 4) of is this linear variety.
OR
Let us take x, = 0 thenwegetx; = 1,x, = —1,x3 =3
Then we get one particular solution of T(u) = (1,2, 3)is uo = (1, -1, 3,0)
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Example-4 Let T: R*—R? be a linear transformation defined byT(e,) = f;, T(e,) =
fa, T(es) =fi + foand T(ey) = —f, — f5. Where {e;,e;,e3,e,} is the
standard basis for R* and {f,, f>, fz} is the standard basis for R® then solve the
equation T(u) = (1, 2, 3).

Solution: Frist calculate the value of T(u)

i.e. T(xq,xy,%3,%x,) Hereu= (xq,x,,x3,%x,) €R%
Since T is a linear map
o T(xq, X2, %3,x4) = x1 T(e1) + x,T(e2) + x3T(e3) + x,T(ey)
= x1 f1 + x2f2 + x3(f1 + f2) + x4 (—f; — f3) (Put the given
values)
= (1 +x3)fi + O +x3=x)f2 + (—x4)f3
((x1 +x3), (X2 + X3 — x4), (—x4)). (f1 f2, f3)
T(x1, X2, X3,X4) = ((x1 + x3), (X2 + x3 — x4), (—x4))
The associated homogeneous equation leads to the equations
i.e. T(xq1,%0,%x3,%,) =0
X1 +x3=0,x; +x3—x4 =0,—x4 = 0.

Solving these, we get x; = —x3 ,x, = —x3,x, =0

Thus, the kernel of T is the set of all vectors of form(—x3, —x3, x3,0),

If we take x; = avVa € R

N(T) = [(—a,—a,a,0)] i.e. N(T) =[a(—1,—-1,1,0)]

~N(T) =[(—-1,-1,1,0)]

Now find T(u) = (1, 2, 3).

Since T(U) = T(xy, X5, X3, %4) = ((x1 + x3), (x5 + x3 — x4) , (—X4))

~((1,2,3).= ((x1 + x3), (X2 + X3 — x4), (—x4))

Thusweget, x; +x3=1,x, +x3 —x, =2, —x, =3

Letustake x; =1 —x3,x, = —1 — x3,x, = —3.

If we take x; = O,thenx; = 1,x, = —1,x, = =3

Then we get one particular solution of T(u) = (1, 2, 3) isuo = (1, -1, 0, -3)

So the complete solution of the equation T T(u) = (1, 2, 3)

is the linear variety (1, -1, 0, -3)+ N(T)

i.e. Theset (1,-1,0,-3)+{(—a,—a,a,0)/a € R},

Which issame as {(—a + 1,—a — 1,a,—3)/a € R}

In other words: The T-pre-image (1, 2, 3) of is this linear variety.

Linear Functional

Definition:-Linear Functional:
Let V be a vector space over a field K or R. A linear transformation F:
V—K is called a linear functional (or linear form) on V.
OR
A map F: V—K is called a linear functional (or linear form) on V if the
following condition is satisfied.
(1) F(au + bv) =aF(u) + b(F(v) Yu,veV and Va,be K
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Example:- Let V be the vector space of polynomials p(t) over R. Define a map I:
1

V—R given by I(p(t))ZI p(x)dt. show that the map I: V—R is a linear
0

functional on V.
Solution:- Let p(t), f(t) eV and Va,b € R be arbitrary. Then

I[ap(t)+ bf(H)] = j[ap(t) +bf()]dt = jap(t)dt + j bf(t) dt

g aJl‘ p(t)dt+bjl'f(t)dt

(® a,b are independent of t and hence they are constants relative to t.)

Ifap(t)+ bf(t)] = al[p(t)]+ bI[f(t)]
This proves that | is a linear functional on V.

Example:- Let V be the vector space of polynomials p(t) over R. Define a map D:
V—R given byD(f)= f (a) .here f (a) is the differentiable function . Show

that the map D : V—R is a linear functional on V.
Solution:- Let p(t), f(t)eV and Va,b € R be arbitrary. Then

D[ap(t)+ bf(t)] = [ap(t) + bf(t)] — ap (t)+bf ()

(© a,b are independent of t and hence they are constants relative to t.)

I[ap(t)+ bf(t)] = aD[p(t)]+ bD[f(t)]
This proves that D is a linear functional on V.

Example:- Let V(K) be the vector space of all nxn matrices whose elements belongs

to K. LetA=|a;| Define amap T : V—K such that T(A) = > a;

i=1
(Note: This T is called trace function.) Show that the function is a linear
functional on V.
Solution:- Let A= [a..J , B= [bJ ., €V and Vb,c eR be arbitrary. Then

T(A) = Za,, and T(B) = Zb”
bA +cB = b[a J c[b J [ba.. +cbijJ

T(bA +¢cB) = Z(ba +cb;) = bz a; + CZ b, =bT(A)+cT(B)
i=1

. T(bA+cB)=bT(A)+c T(B)

This proves that T is linear functional on V.

Example:- Let V(K) be the vector space, then show that the map T : V—K such that
T(x) =0 vx eV is a linear functional on V.
Solution:- Letx,yeV anda,b € K then ax +by eV



13

~T(ax+by)=0=0+0=a.0 +b.0 = aT(x)+bT(y)
- T(ax +by) = aT(x)+bT(y)
This proves that T is linear functional on V.
Note: This linear functional is called zero functional and is denoted by O.

Example:- Consider the vector space R". Let a1,a2,as,..an are fixed real numbers and
u = (x4, %y, ..., X,) € R™.Prove that the function f: R™ — R defined by
f(w) = a;xy + ayx,+, ..., +x,x, is a linear functional.

Solution:- Let u = (x4, x5, ..., x,) and v = (y4, y2, ..., J»,) be any two elements of R"
anda,8 €R

Lau+ v = (axy + Ly, axy + Byy, o, axy + BYy)

~ flau+ Bv) = ay(axy + By1) + az(axz + By;) ..., an(axn + Byn)
(~-By definition of a
linear functional)
= a(ax, + ax,+, ..., +apx,) + f(ay; +
a,y,+, ..., +apyn)

=af(u) +pf(v)
Thus, we get f(au + Bv) = af (w) + Bf (v)

This proves that f is linear functional on R".

Dual spaces

Definition: Dual space:
The set of all linear functional on a vector space V(K) is a vector space
over the same field with the following definitions of vector addition and
scalar multiplication:
()(F + G)(u) = F(u) + G(u),ueV and
(i) (@aF)(u) =a(F)(u) ae K
Here F and G are linear functional on V.
This vector space is called the dual space (or conjugate space) of V and is
denoted by V*.
We also write L(V, K) = V*.
Evidently V* = {T/T: V-K }.

Note:-(1)The set of all linear functional on V(K) is a vector space over K.

(2) If T: V—R be a linear functional then r(T) = land n(T) = dimV-1.
Because dimR =1=rangeof T =rankof T

Theorem:- Let V(K) be a finite dimensional vector space. Then show that dim V* =
dim V

Proof:- Let V be an n- dimensional vector space over a field K.
Let V* be the dual space of V. i.e. the set of all linear functional on V(K),
~dimV=n,L(V,K)V*dmK-=1
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We know that dim L(V, U) =dim (V) dim (U) =n.1 =n=dim (V)
dimV=dim (V)

Definition: Dual basis:
Let {v1, V2, Vs,...,vn} be basis of VV over K. Let us, Uz, Us,...,un €V be the
linear functional defined by
s 1 0f i=]j
i) = 0, = {o it i
basis { uz, Uz, Us,...,un } is called dual basis.
Note:- The symbol &;; is called Kronecker delta.

then { ug, U2, Us,...,un } is a basis of V*. The

Example:- Find the dual basis of R2.with respect to the standard basis of R2.
Solution:- We know that the standard basis of R? is {e1 = (1, 0) , e2 = (0, 1)}
Let { u, uz } be the dual basis of R?.
For this we suppose
ui(Xx, y) = ax +hy , uz(x, y) = cx +dy such that ui(e1) =1, ui(e2) =0:
uzx(e1) =0, uz(e)=1:
Now 1=ui(e1) =ui(l,0)=al+b.0=aie. a=1
0=ui(e2) =u1(0,1)=a.0+b.1=bi.e.b=0
0=ux(e1) =uz(1,0)=c.1+d.0=ci.e.c=0
1=uzx(e2) =u2(0, )=cO0+d.1=die.d=1
Hence ui(x, y) = x and uz(X, y) =y
~{ua(x, y), ua(x, y) 3 ={x, y} is the dual basis.

Example:- Let {vi = (2, 3), v2 = (1, 4)}be the basis of R? then find the dual basis of
R? relative to given basis.

Solution:- here {v1 = (2, 3), v2 = (1, 4)}be the basis of R?.
Let { us, uz } be the dual basis of R?.
For this we suppose
ui(x, y) = ax +hy , uz(x, y) = cx + dy such that us( vi) =1, ui( v2) =0:
uz2(v1) =0, uz(ve) =1:

Now 1=uz(Vv1) =u1(2,3)=a.2 +b.3 i.e.2a+3b =1 Q)
O=ui(v2) =ui(l,4)=al1+b4 ie.a+4b =0 (i)
0=uz(v1) = uz(2,3) =c.2 +d.3 i.e. 2c +3d =0 (iii)
1=ux(v2) = uz(1,4)=c.l +d.4 ie.c+4d =1 (iv)
From (i) & (ii) we geta = % b= _?1

and From (iii) & (iv) we get ¢ = _?3 ,d= 3

4 -1 -3 2
Hence ui(x, y) = —x +—y and uz(X, =X+ —
1(X,y) : =Y 2(x,y) } E =Y

S{ui(x, y), u(x, y) } :{% X +_?1y, _?3x + % y} is the dual basis.



15

Example:- Let {vi = (0, 1, 1), v2= (1,0, 1), va = (1, 1, 0)}be the basis of R® then
find the dual basis of R? relative to given basis.
Solution:- here {v1=(0, 1, 1), v2= (1,0, 1), v = (1, 1, 0)}be the basis of R>,
Let { uz, Uz ,us} be the dual basis of R®,
For this we suppose
ui(X,y, z) =aix + a2y + asz , uz(X, y,z) = bix + by + bsz and
us(X, y,z) = c1x + cay + c3z such that
ur(ve) =1, ui(v2) =0andui(vs)=0:
uz2(v1) =0, uz(v2) =1anduz(vs)=0:
us(v1) =0, us(vz) =0andus(vs) =1
Now 1=uz(v1) =u1(0, 1, 1)=a1.0 + a.1 + az.1
le.az+az=1 0]
O=ui(v2) =ui(1,0,1)=ai.l+a2.0 +as.1
i.e.ar+tas =0 (i)
0=u1(wv3) =ui(1,1,0)=a;.1+a.1+az0
le.art+a =0 (iii)

From (i), (ii) & (iii) we get a1:_71, azzg and a3:%

0=u2(vy) =u2(0, 1, 1)=b1.0+b2.1+ bzl

i.e. b2+ b3 =0 0)
1=uz(v2) =u2(1,0,1)=b1.1+ b2.0 + ba.1
i.e.bi+bs =1 (i)
0=u2(v3) =u2(1,1,0)=bs.1+ b2.1+b3.0
i.e.bi+by =0 (iii)

From (i), (ii) & (iii) we get b1=%, b2 = _71and b3:%

0=u3(vy) =u3(0, 1, 1)=c1.0 +c2.1 + c3.1

l.e.co+c3=0 Q)
0=us(Vv2) =u3(1,0,1)=ci.l+c2.0+cs.l
ie.ct+cz =0 (i)
1=u3(v3) =u3(1,1,0)=cil+c2.l+c¢3.0
ie.ci+tc =1 (iii)

From (i), (ii) & (iii) we get C1=%, C2= %and 03=7

Hence ui(X, v, z):_?lx+ % y + %z , U2(X,y,2) = %x+ _?1y+ %zand

us(X z)—£x+l +_—12
MYEERT YT

S uilx,y, 2) uax, y,2) us(X, y,2)}

1 1 — 1 1 1 -1
={ —Xx+—-y+—-7z, — X+ —y+ -7z, —X+ —y+ —z}is the dual
{ y 2y 555 2)’ > }
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Example: Find the dual basis of the basis { (1, 1, 0), (2, 1, 0), (0, 0, 1)} of the space
RS,
Answer: .. { ui(X, Y, z) u2(x, y,z) us(x, y,z)}
-1 1 1 1

-1 1 1 1 -1 .. .
—X+=y+ =72, =X+ —y+ —7z,—X+ —y+ —2z}is the dual basis.
{ 2 2 y 2 2 2 y 2 2 Zy 2 ¥

Example: Find the dual basis of the basis { (1,-1, 1), (-1, 1, 1), (1, 1, -1b )} of the
space R®.
Answer: . {uw(X,Y, z) uxx, y,z) us(x, y,2)}
1 1 1 1 1 1 .. .
=={ - x+ =z, —y+ —z,—x+ —z}is the dual basis.
2 2 2 2
Dual of Dual

Definition:- Dual of Dual or second Dual space:
For a given vector space V, its dual space V* is also a vector space and
hence we can have its dual (V*)*. We denote it by V** and called the
second dual of V or dual of dual of V.

Note:- If dim V =n then dim V = dim V* = dim V**
i.e.dim V=dim V**

Theorem:-( dual basis existence theorem) Let V be an n-dimensional vector space
and let B = { X1, X2,...Xn}be a basis of V. Then prove that there is a uniquely
determined basis B* = {fi, f2, f3, ...,fa}of V* such that fi(xi) = &.. i,j =1, 2,
3,...0n.

Proof: B = { xq, X2,...xn}be a basis of V and (1,0,0,0,---,0) is an ordered set of n
scalars, then there exists a unique linear functional fion V such that
fi(x1) = 1, fa(x2) =0, f3(x3) = 0,..., fa(Xn) = 0.

In fact

For each i=1, 2, 3,...,n there exists a unique linear functional fi on V such
that

fi(xi) = O ihj=1,2,3,...n.

Let B* = {f(, fo, f3, ...,fn}

We shall show that B* is a basis of V*.

For this, first we show that B* is linearly independent.
Let o, it e, fota, fat ...+, =0 VaeR,i = 1,2,3,...,n
(o, it a, fora, fat ... +a, f1)(X) = 0(X) VxeV

a, fix) +a, f(X) +a; B3(X) +...+a, f))(x) =0

ie. X aifi(x) =0, vj=123,..,n

:>Z?=1 al-(?ij =0

>a;=0=123,..,n

Hence B* is linearly independent.

j
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Examples of finding bases for R? and R® from their given bases through
the Dual Basis Existence Theorem.

Example:-1 The set B = {(1,1,0), (2,1,0), (0,0,1)} is a basis of the vector space R3.
Find the dual basis of V*.
Solution:-
Let x; = (1,1,0),x, = (2,1,0),x3 = (0,0,1) then B = { x4, x2 X3}
Suppose the dual basis of B is B* = = {f, f, fs}
Clearly,
fi(xe) =1, fi(x2) = 0, fi(x3) =0,
fa(x1) =0, fa(x2) = 1, f2(x3) =0
fa(x1) = 0, fa(x2) = 0, fa(xs) = 1 [« fi(x)=6; ij=1,2,3 ..n. =
filx)) =65 =1
and f;(x;) =
812 = 0]
Let (a,b, c)eR3 such that
(a,b,c) = axy + Bx, + yx3
=a(1,1,0) + (2,1,0) + y(0,0,1)
(a,b,c) = (a+2B,a+2B,y)
ca=a+28,b=a+2B,c=y
Solving these equations then we get the values
~a=2b—af=a—-by=c
~(a,b,c) =(2b—a)x; + (a—b)x, + cx3
fl%ar b,c) = (2b—a)fi(x1) + (a = b)f1(x2) + cfi(x3) [ ~ f1 Is linear
map
~ fila,b,c)=2b—a).1+(a—b).0+c.0=(2b—a)
fl(af b, C) = (Zb - a)

Similarly,

fz](a» b,c) = (2b — a)f5(x1) + (@ — b)f2(x2) + cf2(x3) [+ f7 is linear
map

~ fola,b,c) =2b—a).0+(a—b).1+c¢c.0=(a—b)

fZ(ar b, C) = (Cl - b)

and

f3](a» b,c) = (2b — a)f5(x1) + (@ — b)f3(x2) + cf3(x3) [ f5 is linear
map

~ faz(a,b,c) =(2b—a).04+(a—b).0+c.1=c

fB(ar b: C) =c

~ B* is the dual basis of B.
~B*== {fl, f2, f3}
i.e B*= {(2b — a), (a — b), c} is the required dual basis.

Example:-2 find the dual basis of the basis B = {(0,1,1), (1,0,1), (1,1,0)} of the
vector space R®,
Solution:-
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Let x;, = (0,1,1),x, = (1,0,1),x3 = (1,1,0) then B = { x1, x2 X3}
Suppose the dual basis of B is B* = = {fy, f, f3}
Clearly,
fi(x1) = 1, f1(x2) = 0, f1(x3) = 0,
fa(x1) =0, fa(x2) =1, fa(x3) =0
fa(x1) = 0, f3(x2) = 0, fa(xs) = 1 [« fi(x)=6; ij=1,2,3 ...n. =
fi(x)) = 5ij =1
and f(x;) =
812 = 0]
Let (a, b, c)eR3 such that
(a,b,c) = axy + Bxy; + yx3

=a(0,1,1) + (1,0,1) + y(1,1,0)
(a,b,c)=B+y,a+v,a+B)

ca=p+yb=aty,c=a+p
Solving these equations then we get the values

_ _b+c—a _a+c—b _a+b—c
TEETT P T T YT T

b+c—a a+c—0>b a+b—c
~(a,b,c) = > X1 + > Xy + > X3

b+c— -b b— -
= fila,b,c) = ZE2 fi () + EE2 () + EE=fi () [+ f s linear
map]
- f(ab )_b+c—a1+a+c—b0+a+b—co_b+c—a
~ fila,b,c) = > ) > ) > .0= >

b+c—a
: fila,b,c) = ———2

2

Similarly,

b+c—a a+c—-b a+b—c

~ f2(a, b, c) — (1) +—=—f2(x2) + ——f2(x3) [~ f is linear
map]

b+c—a a+c—0>b a+b—c _a+c—b

~ fola,b,c) = 3 .0+T.1+ > 0= >
+c—b

o~ fz(a,b, C) = %

and

b+c—a a+c—b

~ f3(a,b,c) = — (1) + ——f3(x2) + cf3(x3) [ f5 is linear map]
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b+c—a a+c—0>b a+b—cl_a+b—c

f3(a,b,c) :T.O-FT.O-F ) . = 5
a+b—c
~ f3(a,b,c) = 5

~ B* is the dual basis of B.

& B* == {f, f, fa}

b+c—a a+c—-b a+b-c

i.e B*={ > S } is the required dual basis.

)

Example:-3 find the dual basis of the basis B = {(2,3), (1,4)} of the vector space R?.
Solution:-

Let x; = (2,3),x, = (1,4) then B = { x4, x2}

Suppose the dual basis of B is B* = = {f, f2}

Clearly,

f1(X1) =1, f1(X2) =0,

fa(x1) =0, fa(x2) =1,

[ fl(x]) = 611 |,J = 1, 2, 3, PR o P fl(xl) = 61] =1

and f;(x;) =

812 = 0]

Let (a,b)eR? such that

(a,b) = ax; + Bx,

=a(2,3) + p(1,4)

(a,b) = a + B,3a+4p)

~a=2a+p,b=3a+4p
Solving these equations then we get the values

- _4a—b _2b—3a
TE=Ty PT s

4a—b 2b —3a
5 At~

o (a, b) = X2

4a 2b-3a

~ fi(a,b) = S_bfl(xl) +=——f1(x2) [ * fy is linear map]

4a—b1+2b—3a0_4a—b
5 ° 5 5

~ fi(a,b) =
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- b _4a—b
- fila,b) = —

Similarly,
4a-b 2b-3a

* fo(a, b) —— fo(x1) + = f2(xz) [ * f is linear map]

A b)_4a—b0+2b—3a1_2b—3a
“f(a,b) =5 5 T 5

2b — 3a
fZ(a! b, C) = 5

~ B* is the dual basis of B.

2 B*=={f, f,}

i.e B*= {4a5_b,2b;3a} is the required dual basis.

Example:-4 find the dual basis of the basis B = {(1,-1,1), (—1,1,1),(1,1,—-1)} of

the vector space R®.
a+c b+c a+b

Ans:- B*= {7553

Example:-5find the dual basis of the basis B = {(1,1,1), (1,0, —1), (0,3,4)} of the

vector space R®,
3a—-4b+3c —a+4b-3c —a+2b—c}

Ans:- B*= { T, T,
Example:-5find the dual basis of the basis B = {(1,—-1,2), (3,0,1), (0,1, —1)} of the

vector space R®,
Ans:- B*= {3b—;1+3c, a—;)—c ’ 5b—;l+3c}

Definition:- Annihilators :
Let W be a subset of a vector space V over a field k and VV* its dual. Let W

be a subset of V which is not necessarily a subspace. Then a linear
functional feV* is called an annihilator of W if f(x) = 0 for every xeW.

It is denoted by W©.

i.e. The set of all linear functional f on V such that f(x) = 0 for every xeV.
i.e. f(w) =0, is called an annihilator of W.

Also W0 = {feV*: f(x) = OVx € V}

Note:- Annihilator of V is the zero functional on V. and {0}° = V*.

Theorem:- Let W be a non-empty subset of a vector space V. Then prove that the
annihilator WPof W is subspace of V*. (OR) Prove that the W° is
subspace of V*.

Proof:- By the definition of W?,

It is clear that 0 € W° and W° c V*,
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Now suppose ¢4 ¢, € W° and for any scalars a, b € R and for any a € W,

(ag1+bdy)(a) = ap(a)+bdp,(a)
a.0+b.0 (¢ ¢, € w9
0

o ap,+bp, € WO
Hence, W° is subspace of V*.

Note:- WO is subspace of V*, whether W is a subspace of V or not.

Theorem:- Let V be a finite dimensional vector space over the field F and let W be a

Proof:-

subspace of V. Then Prove that dim W + dim W° = dim V.
(OR) If W is an m-dimensional subspace of an n-dimensional vector space
V. then show that the annihilator W° is an (n-m) dimensional subspace of
V.

Let V be a finite dimensional vector space over the field F.
Let dimW =m
Let W be a subspace of V. Then W? is subspace of V*.
Since W is a subspace of V so that
dimW <dim dimW
i.e. m<n.
Let { x1, X2,...xm}be a basis of W.
So it can be extended to form a basis of V.
Choose vectors Xm+1, Xm+2,... Xn In 'V such that B = { X1, X2,...Xm , Xm+1, Xm+2,...
Xn }s basis of V.
Let {f1, f2, f3, ...,/n}be basis of V* which is the dual to B.
Now we claim that { fu+1, fms2,... fn } is basis of WO,

Obviously, f; € W°, vi >m+1 because f;(x;)d;; = {

And ;=0 ifi=zm+1 andj<m.
Since { fm+1, fm+2,... fn } is @ subset of linearly independent
Now we show that { fm+1, fm+2,... fn } spans W,
Let f € W be an arbitrary linear functional,
Sothat f(x;) = 0for1 <i<m 1)
wlcv*and feV*
But {fy, f2, f3, ...,/n} generates V",
n

if = Zf(xi)fi

= FDfy + FODf + - FCom)fn + F G fons + f Coms2 fonsz +
ot f Q)

= f(xm+1)fm+1 + f(xm+2)fm+2 + -t f(xn)fn = 11'1=m+1 f(xl)fl

This shows that { fu+1, fms2,... fa }} spans WP,

0 i+
1i=j
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Thus, { fm+1, fm+2,... fn } is basis of WO,
Accordingly,
dimWl=n—-m=dimV -dimW.

Corollary:-1f W and W1 are two subspaces of a vector space V which are annihilated
by the subspace W°then dimW = dimW..

Proof:- W and W; are two both annihilated by the subspace W°and both are
subspaces of V then we have
dim W + dim W9 = dim V (1)
dim Wi + dim W° = dim V 2)
Now subtract (2) from (1) then we get
dim W =dim W,

Theorem:- If W and W1 are two subspaces of a finite dimensional vector space V,
then W1 =W, ifandonly if W1® =Wy’ .
Proof:- If Wi =W, then obviously W° =W’
Let us suppose that W1 = W>
Then there is at least one vector Wiin which not in Wa.
Suppose x € W2 and x €W,
Then there a linear functional f such that f(y) =0y € W but f(x) # 0
This implies that £ eW:° ,but f gW,° and thus W1 = W-°.
Hence Wi% = W20 if W1 =W,

Bilinear forms

Definition:- Bilinear form (or) 2-Form: (or) bilinear functional
Suppose VC is finite dimensional vector space over a field R. Let
Uy, Uy, V1, V, € Vanda, b € R be arbitrary. Amapping T:V XV - Risa
bilinear (or bilinear functional) on V. if following are satisfied:
(i) T(u,avy + bvy) = a.T(u,v;) + b.T(u,vy)
(i) T(u,avy + bvy) = a.T(u,vy) + b.T(u, v,)

Note:- —We express condition (i) by saying f is linear in its first variable (co-
ordinate) and condition (ii) by saying f is linear in its second variable (co-
ordinate).

— Such mapping f id also known as Sesqui-linear form.

Example:
Prove that the zero function from T:V XV — R is a bilinear on V.
i.e. Let from T:V x V — R defined by from T(u,v,) =0, Vu,v €V is
bilinear on V.
Solution:
Let uy,u,, v, v, €EVanda,b €R
& T(ug,v) =T(uy,v) =T, v) =T, vy) =0

Since T(u,avy + bv,) =0
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=a.0+b.0
=a.T(uv) +b.T(u,v,)
Similarly,
T(auy + buy,v) =0

=a.0+b.0
=a.T(uy,v) + b.T(uy,v)
~ T is bilinear form.

Example: Let V= R3. Suppose u =(xX1,X2,X3) and v = (y1,y2,y3) € R and defined by
f(u,v) = x1y, — 3x,y3 + x3y; then Show that f is a bilinear for.
Solution:-
Letu = (x;x5,%3), v = (y1¥2, ¥3)and w = (z,2,,2z3)eR%and a,b € R
~au+bw = (ax, + bzy,ax, + bz, ax; + bzs)
Now,
flau + bw,v) = (ax; + bzy)y, — 3(ax, + bz,)y; + (ax3 + bz3)y;
= a(x1y; — 3x2y3 + x3¥1) + b(21y; — 3233 + 23Y1)
=af(uw,v) + bf(w,v)
Similarly,
f(u,av + bw) = x,(ay, + bz,) — 3x,(ays + bzs) + x3(ay, + bz;)
= a(x1y; — 3x3y3 + x3y1) + b(x12; — 3x323 + X371)
=af(uw,v)+ bf(u,w)

=~ f is bilinear form.

Example:
Which of the following functions f define on vectors u = (x;, x,) and v =
(y1,¥,) in R? are bilinear form?
(1) f(u, v)=xay2- xoy1
(2) f(u, v)= (x1=y1)? + x2,.
Solution:-(1)
Letu = (x;x,) ,v = (y1y)and w = (z,z,)eR%*and a,b € R
~au+ bw = (axy + bz, ax, + bz,, ax3 + bz3)
And ay + bw = (ay; + bz,,ay, + bz,,ay; + bz3)
Now,
flau + bw,v) = (ax; + bzy)y, — (ax, + bzy)y,
= a(x1y; — x31) + b(21Y, — 231)
=af(uw,v) + bf(w,v)
Similarly,
f(u,av + bw) = x;(ay, + bzy) — x,(ay; + bz;)
= a(x1y; — x31) + b(x125 — x327)

=af(uw,v)+ bf(u,w)

=~ f is bilinear form.

Solution:-(2)
Letu = (x1%,) , v = (y1yp)and w = (z,2,)eR%?and a, b € R
~au+ bw = (axy + bz, ax, + bz,, axs + bz3)
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And ay + bw = (ay; + bz;,ay, + bz,,ay; + bz3)

Now,
flau,v) = (ax; — y1)* + ax,y,
= a’x;® = 2ax,y, + y1 2 + axyy, (i)
And
af (w,v) = a[(x; — y1)® + x,¥,]
= ax,? — 2ax,y; + ay;® + ax,y, (i)

From (i) and (ii)
f(lau,v) # af (u,v)

~ f is not a bilinear form on R2.

Example:
Let ¢ and i be linear functional on a vector space V over R. Define a map
T:V XV - R by the formula T (u, v) = ¢(w).yp(v) Vu,v € V. Then show
that T is bilinear on V.
Solution:
Let uvweVanda,b €R
~ T(au + bw,v) = ¢p(au + bw). Y (v)
= [ap(w) + bp(W)].Y(v) (+ ¢ islinear map.)
=apw).p(v) + bp(w).¥(v)
= aT(u,v) + bT(w,v)
Similarly,

T(u,av + bw) = ¢p(u).yp(av + bw)
= ¢). [ap(v) + bY(w)] (~ ¢ islinear map.)
=apw).p(v) + bgp(w). p(w)
=aT(u,v) + bT (u,w)

~ T is bilinear form.

Example:
Define amap T: R™ — R by the formula T (u, v) = Y.}, a;b; where u =
(a1, ay, ...,a,) and v = (by, by, ..., by). Then show that T is bilinear on R™.
Solution:
Let u,v,we R™ where u = (ay, ay, ...,a,) and v = (by, by, ..., b)) and w =
(c1,¢3, ., ) anda,f ER
n

=~ T(au + pw,v) = Z(Ulai + Bei)b;

= Yiz1(aa;b; + Beiby)
= aZ?zl aibi + :B Z?:l Cibi
= aT(u,v) + bT(w,v)
Similarly,
n
T(u,av + bw) = Z a;(ab; + fc;)

i=1
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= Yiz1(aa;b; + Ba;c;)
=aYia;.b + B Y ac
=aT(u,v) + bT (u,w)
~ T is bilinear form.

Note :- The set of all bilinear forms on V denoted by B(V).



