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SEM-V 

MAT 301: Linear Algebra- II (Theory) 

Unit-1 

 

Definition:- Composition of linear maps:- 

Let U, V and W are vector spaces. Let T : U→V and  

 

S : V→W be two linear maps. Then the composition  

 

SoT : U→W is defined by SoT(u) = S(T(u)) for all  

 

uU. Here SoT is called the composition of S and T. 

 
 

 

 

Definition:- Linear transformation :- 

Suppose U and V are vector spaces either both real or both complex. 

Then the map T: U→  V is said to be a linear map (transformation,  

operator), if  

(i) T (u1 + u2 ) = T (u1) + T (u2 )  for all, u1 , u2 U 

(ii) T ( u ) =  T (u)   for all, u U and all scalars . 
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Example:- Show that SoT is a linear map. 

Solution:- Let u1,u2U and   is any scalar. Then 

(i) SoT(u1 + u2) = S(T(u1 + u2))             [  by  definition of composition] 

    = S(T(u1) + T(u2))        [T is linear map] 

    = S(T(u1) )+ S(T(u2))        [S is linear map] 

    = SoT(u1) +So T(u2)        [ by  definition of composition] 

 

(ii) SoT( u1) = S(T( u1) )            [  by  definition of composition] 

    = S( T(u1)       [T is linear map] 

    =  S(T(u1)        [S is linear map] 

    =   SoT(u1)      [ by  definition of composition] 

  

From (i) & (ii) SoT is a linear map 

i.e. The composition of two linear map is again a linear map. 
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Example:- Let a linear map T : V3→V4 be defined by  

T(e1) = (1, 1, 0, 0) , T(e2) = (1, -1, 1, 0) and T(e3) = (0, -1, 1, 1), where 

{e1,e2,e3} is the standard basis for V3, and let a linear map S : V4→V2 be 

defined by  

S(f1) = (1,0) , S(f2) = (1, 1), S(f3) = ( 1, -1) and S(f4) = ( 0, 1), where 

{f1,f2,f3,f4} is the standard basis for V4 . Then find SoT: V3→V2. 

Solution:- Since  

SoT(e1) =  S(T(e1)) = S(1, 1, 0, 0) = S(f1 + f2) = S(f1) + S(f2) = (1,0)+ (1, 1)  = 

(2,1) 

Now  

SoT(e2) =  S(T(e2)) = S(1, -1, 1, 0) = S(f1 - f2 +f3) = S(f1) - S(f2) + S(f3) =  

(1,0) - (1, 1) + ( 1, -1)   = (1,-2) 

Now 

SoT(e3) =  S(T(e3)) = S(0, -1, 1, 1)= S(-f2 + f3 +f4) = -S(f2) + S(f3) + S(f4) =  

 -(1, 1) + ( 1, -1) + ( 0, 1) = (0,-1) 

 

Note:-  

❖ We can write ST for  SoT and call it the product of  S and T rather than the 

composition of S and T. 

❖ If ST defined then TS need not be defined. Even if both are defined, they need 

not be equal. Thus the commutative law of the product is not in general 

satisfied. The other laws of multiplication are easily seen to hold. 

 

Theorem:-  LetT1 ,T2  be linear maps from U to V. Let S1, S2  be linear maps from V to 

W. P be linear maps from W to Z, where U, V, W and Z are vector spaces 

over the same field of scalars. Then prove that  

(a) S1(T1 + T2  ) = S1T1 + S1T2 . 

(b) (S1 + S2 ) T1 = S1T1 + S2T1. 

(c) P(S1T1) = P(S1)T1. 

(d) ( S1)T1 =  (S1T1) = S1( T1) , where   is a scalar. 

(e) IVT1 = T1 and T1 IU = T1  

 

 Proof :(a)  

  Since T1 and T2  be linear maps from U to V . 

   i.e. T1 : U→V ,T2 : U→V 

 T1 + T2  be linear maps from U to V. 

i.e. T1 + T2: U→V be linear maps. 

Also S1  be linear maps from V to W. 

 i.e. S1 : V→W be linear maps. 
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 S1 (T1 + T2) be linear maps from U to W. 

i.e. S1 (T1 + T2): U→W be linear maps and S1T1 + S1T2 is also defined. 

 S1 (T1 + T2) and S1T1 + S1T2 have the same domain U. 

Let uU then 

S1[(T1 + T2)](u) = S1[(T1 + T2) (u)]                      [  by  definition of product] 

     = S1[T1(u) + T2 (u)]                   [  by  sum of linear map] 

     = S1(T1(u)) + S1 (T2 (u))       [S1 is linear map] 

     = (S1T1)(u) + (S1T2)(u)       [ by definition of 

commutative] 

     =( S1T1 + S1T2)(u)               [  by  definition of sum of linear 

map] 

This proved that S1(T1 + T2  ) = S1T1 + S1T2 . 

 

Proof of (b) is similar to (a). 

 

(c)  Since P :W →Z ,S1 : V→W be linear maps and T1 : U→V be linear maps. 

  S1T1 : U→W be linear maps. 

 P(S1T1): U→Z be linear maps. 

  the domain of  P(S1T1) and  P(S1)T1 is common. 

Let uU then 

[P(S1T1)](u) =P[(S1T1) (u)] = P[(S1{T1 (u)}] = {(PS1)T1 (u)} = P{S1)T1 (u)} 

 

Hence, images of u under the two functions are same. 

 we get 

P(S1T1) = P(S1)T1 

(d) Proof (d) is simple. 

(e) Domain of IVT1 = domain of T1=U. So  the functions 

 IVT1 and T are same 

 (IVT1)(u)= IV(T1(u)) 

 Similarly T1Iu = T1. 

             = T1(u) 

  IVT1=T1 

Note :-  We know that  T : U→V be a nonsingular linear map, i.e. T is one-one and   

             onto. Then T-1 : V→U exists and is linear. Further TT-1 =IV and T-1T = IU. 

 

Theorem:- T : U→V and S:V →W be a linear maps. Then  

(a) If S and T are nonsingular, then ST is nonsingular and (ST)-1 = T-1S-1. 

(b) If ST is one-one, then T is one-one.. 

(c) If ST is onto, then S is onto. 

(d) If ST is nonsingular, then T is one-one and S is onto. 

(e) If U, V, W are of the same finite dimension and ST is nonsingular, then 

both S and T are nonsingular. 

 

Proof: Since S is nonsingular. S-1 exists and SS -1 = IW and S-1S = Iv. 

 Since T is nonsingular. T-1 exists and TT -1 = IV and T-1T = IU. 
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 Then we have (ST)( T-1S-1)= (S(T( T-1S-1) ) = (S(TT-1)S-1) = S(IVS-1) = SS-1 = 

IW. 

          Similarly, 

 (T-1S-1)(ST) = (T-1(S-1(ST)) = (T-1((S-1S)T)) = T-1()IVT) = T-1T = IU 

 Hence ST is nonsingular and (ST)-1 = T-1S-1. 

 

The Space L(U, V) 

 

Definition:- Sum of two linear maps: 

 Let T: U→V and S : U→V be two linear transformations. The linear map 

 M: U→V defined by M(u) = S(u) + T(u) for all uU is called  the sum of 

two linear map S and T. 

 

Example:- Let T: U→V and S : U→V be two linear transformations. Then prove that 

                 M: U→V defined by M(u) = S(u) + T(u) for all uU linear map. 

 Solution:- Let u1,u2U then  

 M(u1+ u2) = S(u1+ u2)  + T(u1+ u2)          [  by  definition of M] 

= (S(u1)+ S(u2) ) + (T(u1)+ S(u2))          [  S and T linear map] 

M(u1+ u2) = (S(u1)+ S(u2) ) + (T(u1)+ S(u2))     _______(i) 

And M(u1)+M(u2) = (S(u1)+ S(u1) ) + (T(u2)+ S(u2)) [  by  definition of M] 

        = (S(u1)+ S(u2) ) + (T(u1)+ S(u2)) 

M(u1)+M(u2) = (S(u1)+ S(u2) ) + (T(u1)+ S(u2)) _______(ii) 

 From (i) & (ii) 

     M(u1+ u2) = M(u1)+M(u2)   ______________(a) 

 

Again let  R and u1U then  

M( u1)= S( u1)+ T( u1)                           [  by  definition of M] 

   =  S(u1)+  T(u1)                           [  S and T linear map] 

   =  (S(u1)+ T(u1)) 

  =   M(u1) 

 

        M(u1)=   M(u1) ______________________(b) 

From (a) & (b)  

M: U→V be a linear map. 

 

Definition:- Scalar multiple of a linear map:  

Let  S : U→V be  linear transformation and   be any scalar. Then the linear 

map P: U→V defined by P(u) =  (S(u))  for all uU is called  Scalar 

multiple of a linear map S and  . 

 

Example:- Let  S : U→V be  linear transformation and   be any scalar. Then prove 

that   

                  P: U→V defined by P(u) =  (S(u)) for all uU is linear map. 

Solution:- Let u1,u2U and   be any scalar then  

P(u1+ u2) =  (S(u1+ u2))             [  by  definition of P] 

           =  (S(u1)+ S(u2))        [  S is linear map] 
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           =   (S(u1))+  (S(u2))  

          = P(u1)+ P(u2) 

P(u1+ u2) = P(u1)+ P(u2) _______________(i) 

Again   be any scalar and uU then  

P( u) =  (S( u))               [  by  definition of P] 

           =  ( S(u))              [  S is linear map] 

      =  ( (S(u))) 

      =   P(u)   

P( u) =  P(u) _________________(ii) 

From (i) & (ii) 

 P: U→V is linear map. 

 

Example:- Let T: V3→V2 and S : V3→V2 be two linear transformations 

 defined by T(x1, x2, x3) = (x1 – x2, x2 + x3) and S(x1, x2, x3) = (2x1, x2 - x3) 

then find (S +T) and  (S). 

 Solution:- Since (S +T) : V3→V2 is given by  

(S +T) (x1, x2, x3) = S(x1, x2, x3) + T(x1, x2, x3) 

       = (2x1, x2 - x3) + (x1 – x2, x2 + x3) 

       =  (3x1- x2, 2x2) 

And  S: V3→V2 is given by  

  (S) (x1, x2, x3) =  (S(x1, x2, x3) ) 

     =  (2x1, x2 - x3) 

     = (2 x1,  (x2 - x3)) 

 

Example:- Let T: V3→V3 and S : V3→V3 be two linear transformations 

  defined by T(e1) = (e1 + e2) ,  T(e2) = e3 , T(e3) = (e2 – e3);  S(e1) = e3 ,  

S(e2) = (2e2 – e3) and S(e3) = 0  then find (S +T) and 2T 

Solution:- Since (S +T) : V3→V3 is given by  

(S +T) (e1) = S(e1) + T(e1) =e3 +(e1 + e2)  =e1 + e2 + e3  

  (S +T) (e2) = S(e2) + T(e2) =(2e2 – e3)+e3   = 2e2  

(S +T) (e3) = S(e3) + T(e3) =0 +(e2 – e3)  =e2 - e3  

And 2T: V3→V3 is given by 

  (2T) (e1) =  2T(e1) = 2(e1 + e2)    

  (2T) (e2) = 2T(e2) = 2e3    

  (2T) (e3) = 2T(e3) = 2(e2 – e3)  

 

Note: - The set of all linear transformations from U to V is denoted by L(U, V). Here 

U  

              and V are vector spaces. 

 

Theorem: The set L(U, V) of all linear maps from U to V together with  the 

operations   

                   of addition and scalar multiplication as defined above is a vector space.   

Proof: We have already seen that the sum of two linear maps from U to V is again a     

linear map from U to V. Hence L(U, V) is closed under addition. Also a scalar 
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multiple of a linear map is again a linear map. Hence L(U, V) is closed under 

the operation of  scalar multiplication.  

Now we define zero linear map takes any vector of U into a zero vector V. 

Negative of a linear map–T: U→V is defined by  (-T)(u) = (-u) 

The following properties are the consequence of these definitions. 

If S, T, R are any linear maps belonging to L(U,V) and  ,  any scalars then  

(i) Addition in L is commutative. i.e. S + T = T+ S 

(ii)Addition in L is Associative. i.e. (S + T) + R = S+(T + R) 

(iii) There exists an 0L such that T + 0 = T. Here 0 is called identity element 

for  

     addition. 

(iv) For each TL there exists –TL such that T + (- T) = 0. Here (- T) is 

called    

     Inverse element for addition 

(v)  (S + T) = S +  T  

(vi)(  + )T =  T +  T 

(vii) ( )S =  (  S) =   S 

(viii) 1.S = S. 

Hence L(U, V) satisfied all axioms for vector space so it is vector space. 

i.e. the set of all linear transformation from U to the vector space V is a vector 

space itself. 

Operator Equation 

 

Definition: Operator Equation: 

              Let T: U→V be a linear map from the vector space U to the vector space V.     

              the equation T(u) = vo  ,Where vo is a fixed vector in V, is called an Operator     

              Equation. 

 

Note:(i) if v0 = 0  i.e. T(u) = 0v then the equation is called homogenous (H) equation.      

         (ii)  if v0   0v  i.e. T(u) = vo then the equation is called nonhomogenous (NH)     

               equation. 

         (iii)The set of solutions of the equation T(u) = 0 is the kernel of T i.e. N(T). 

 

Theorem:- Let T: U→V be a linear map. Given v0   0v in V, the nonhomogenous 

(NH)    

                  equation. T(u) = vo  and the associated homogenous (H) equation T(u) = 0v    

                  have the following properties: 

(a) If v0R(T), then (NH) has no solution for u. 

(b) If v0R(T) and  (H) has trivial solution, namely, u = 0u, as its only 

solution, then, (NH) has unique solution. 

(c) If v0R(T) and  (H) has a nontrivial solution, namely, a solution u   0U, 

then (NH) has infinite number of  solutions. In this case if u0 is a solution 

of (NH), then the set of all solutions of (NH) is linear variety u0+K, where 

K = N(T) is the set of all solutions of (H). 

Proof:- (a) is obvious. Recall the definition of R (T). 

     (b) If v0R(T), then T (u) = v0 has a solution. 
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          If T (u) = 0v has only one solution, i.e. u = 0U, then N (T) = {0U}, 

          i.e. T is one-one. 

This means T (u) = v0 cannot have more than one solution, 

  i.e. the solution of (NH) is unique. 

   (c) If T(u) = 0v has a nonzero solution , then N(T)   {0U}. 

 Let u0   U be a solution of (NH) .  

 It exists because v0   R (T).   

 Then T (u0) = v0. 

 Now if uk  N(T), then  T( u0+uk ) = T (u0) + T (uk ) 

              = v0 + 0v 

              = v0 

Therefore, u0 +uk is a solution of (NH). This is true for every uk  N(T) and 

since this letter has infinite number of elements in it, (NH) also has an infinite 

number of solutions. 

From this discussion it is obvious that u0 + K, where K = N(T), is contained the 

solution set of (NH).  

Conversely, If w be any other solution of (NH) then  

T(w) = v0 =  T (v0)  or T(w - u0) = v0  

i.e. w - u0N(T) = K 

So w and u0 belong to the same parallel of K, namely u0 + K. 

Thus, the solution set of (NH) is precisely u0 + K. 

 

Note:- u0 + K is the pre-image of v0. 

 

Example:- Let D:C(0, 2 )→ C(0, 2 ) be the linear differential operator .the operator   

                equation D(f)(x) = sin x. 

Solution:- the associated homogeneous equation (H)is as  D(f)(x)= 0 

                  The solution set of this equation is the set of all constant functions. 

                   K = {f/f(x)  = b for all x(0, 2 ) and b a constant} 

                   One solution of  D(f)(x) = sin x  is the function f0, where f0(x) = -cosx. 

                   So the solution set is f0 + K. 

                   In other words, the set of all function g, where g(x) = -cos x + (a constant) 

is                   

                   the solution set of D(f)(x) = sin x. 

 

Note: To solve a nonhomogeneous operator equation (NH) 

T(u) = v0, 

Where T is linear operator, 

We go through three steps: 

Step 1. Form the associated homogeneous equation (H) 

Step 2. Get all solutions of (H). It is the kernel of T, i.e. N(T). 

Step 3. Get one particular solution u0 of (NH). 

Now the complete solution of (NH) is u0 + N(T). 

 

Examples of solving an operator equation: 
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Example-1 Let T: V5→V3 be a linear transformation defined byT(e1) =  
1

2
𝑓1, T(e2) =

1

2
𝑓1, T(e3) = 𝑓2, T(e4) = 𝑓2and T(e5) = 0. Where {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}  is the 

standard basis for V5 and {𝑓1, 𝑓2, 𝑓3} is the standard basis for V3 then solve 

the equation T(u) = (1, 1, 0). 

Solution: Frist calculate the value of T(u) i.e. 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)  Here u∈ V5. 

Since T is a linear map 

∴  𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥1 T(e1) + 𝑥2T(e2) + 𝑥3T(e3) + 𝑥4T(e4) +
𝑥5T(e5) 

                        =  𝑥1  
1

2
𝑓1 + 𝑥2

1

2
𝑓1 + 𝑥3𝑓2 + 𝑥4𝑓2 + 𝑥5. 0 (Put the given 

values) 

                        =   (
𝑥1+𝑥2

2
)𝑓1 + (𝑥3+𝑥4)𝑓2 + 0𝑓3  

                        =   (
𝑥1+𝑥2

2
, 𝑥3 + 𝑥4 ,0) (𝑓1, 𝑓2, 𝑓3)  

  𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (
𝑥1+𝑥2

2
, 𝑥3 + 𝑥4 ,0)  

The associated homogeneous equation leads to the equations 

i.e. 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 0 

 
𝑥1+𝑥2

2
= 0, 𝑥3 + 𝑥4 = 0. 

Solving these, we get  𝑥2 = −𝑥1 , 𝑥3 = −𝑥4 Thus, the kernel of T is the set 

of all vectors of form(𝑥1, −𝑥1, 𝑥3, −𝑥3, 𝑥5), 

 i.e. 𝑥1 (1, −1,0,0,0) + 𝑥3(0,0,1, −1,0)+𝑥5(0,0,0,0,1)  

∴ N(T) = [(1, −1,0,0,0), (0,0,1, −1,0), (0,0,0,0,1)] 

Now find T(u) = (1, 1, 0). 

Since T(u) = 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (
𝑥1+𝑥2

2
, 𝑥3 + 𝑥4 ,0)  

∴(1, 1, 0) = (
𝑥1+𝑥2

2
, 𝑥3 + 𝑥4 ,0)  

Thus we get, 
𝑥1+𝑥2

2
= 1 , 𝑥3 + 𝑥4 = 1 

Let us take 𝑥1 = 2, 𝑥2 = 0, 𝑥3 = 1, 𝑥4 = 0, 𝑥5 = 0. 

 

Then we get one particular solution of T(u) = (1, 1, 0) is u0 = (2, 0, 1, 0, 0) 

So the complete solution of the equation T(u) = (1, 1, 0) 

is the linear variety (2, 0, 1, 0, 0) + N(T)  

 i.e. The set  (2, 0, 1, 0, 0) + {(𝑎, −𝑎, 𝑏, −𝑏, 𝑐)/𝑎, 𝑏, 𝑐 ∈ 𝑅}, 

Which is same as {(𝑎 + 2), −𝑎, (𝑏 + 1), −𝑏, 𝑐)/𝑎, 𝑏, 𝑐 ∈ 𝑅} 

In other words: The T-pre-image (1, 1, 0) of is this linear variety. 

 

Example-2 Let T: R3→R2 be a linear transformation defined by𝑇(𝑥1, 𝑥2, 𝑥3) =
(𝑥1 + 𝑥2, 2𝑥2 + 𝑥3 )   then solve the equation T(u) = (2, 4), u∈ R3. 

Solution: Frist calculate the value of T(u) i.e. by 𝑇(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 𝑥2, 2𝑥2 + 𝑥3 )  

The associated homogeneous equation leads to the equations 

i.e. 𝑇(𝑥1, 𝑥2, 𝑥3) = 0 

 

𝑥1 + 𝑥2 = 0, 2𝑥2 + 𝑥3 = 0. 
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Solving these, we get  𝑥1 = −𝑥2 , 𝑥3 = −2𝑥2 

 Thus, the kernel of T is the set of all vectors of form (−𝑥2, 𝑥2, −2𝑥2), 

If we take −𝑥2 = 𝑎∀𝑎 ∈ 𝑅 

 N(T) = [(a, −a, 2a)] 

∴ N(T) = [(1, −1,2)] 

Now find T(u) = (2, 4), u∈ R3. 

  Since T(u) = 𝑇(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 𝑥2, 2𝑥2 + 𝑥3 )     

∴ (2, 4) = (𝑥1 + 𝑥2, 2𝑥2 + 𝑥3 )      

Thus we get, 𝑥1 + 𝑥2 = 2 , 2𝑥2 + 𝑥3 = 4     ⇒𝑥1 = 2 − 𝑥2 , 𝑥3 = 4 − 2𝑥2 

Let us take 𝑥2 = −1  then we get 𝑥1 = 3, 𝑥3 = 6 

Then we get one particular solution of T(u) = (2, 4) is u0 = (3, -1, 6) 

So the complete solution of the equation T(u) = (2, 4) 

is the linear variety (3, -1, 6) + N(T)  

 i.e. The set  (3, -1, 6)+ {(𝑎, −𝑎, 2𝑎)/𝑎 ∈ 𝑅}, 

Which is same as {(𝑎 + 3), −(𝑎 + 1), (2𝑎 + 6)/𝑎 ∈ 𝑅} 

In other words: The T-pre-image (2, 4) of is this linear variety. 

 

Example-3 Let T: R4→R3 be a linear transformation defined by 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4) =
(𝑥1 − 𝑥4, 𝑥2 + 𝑥3, 𝑥3 − 𝑥4)   then solve the equation T(u) = (1,2, 3), u∈ R4. 

Solution: Frist calculate the value of T(u)  

i.e. by 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1 − 𝑥4, 𝑥2 + 𝑥3, 𝑥3 − 𝑥4)  

The associated homogeneous equation leads to the equations  

i.e. 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 0 

𝑥1 − 𝑥4 = 0, 𝑥2 + 𝑥3 = 0  𝑥3 − 𝑥4 = 0. 

Solving these, we get  𝑥1 = 𝑥4 , 𝑥2 = −𝑥3, 𝑥3 = 𝑥4 

 Thus, the kernel of T is the set of all vectors of form (𝑥4, −𝑥4, 𝑥4, 𝑥4) 

If we take 𝑥4 = 𝑎∀𝑎 ∈ 𝑅 

 N(T) = [(a, −a, a, a)]  i.e. N(T) = [𝑎(1, −1,1,1)]   

∴ N(T) = [(1, −1,1,1)] 

Now find T(u) = (1,2, 3), u∈ R4 

  Since T(u) = 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1 − 𝑥4, 𝑥2 + 𝑥3, 𝑥3 − 𝑥4)     

∴ (1,2, 3) = (𝑥1 − 𝑥4, 𝑥2 + 𝑥3, 𝑥3 − 𝑥4)      

Thus we get, 𝑥1 − 𝑥4 = 1 , 𝑥2 + 𝑥3 = 2, 𝑥3 − 𝑥4 = 3     ⇒𝑥1 = 1 + 𝑥4 , 𝑥2 =
2 − 𝑥3, 𝑥3 = 3 + 𝑥4 

∴ 𝑥2 = 2 − 3 − 𝑥4 = −1 − 𝑥4 

Let us take 𝑥4 = 1  then we get 𝑥1 = 2, 𝑥2 = −2, 𝑥3 = 4 

Then we get one particular solution of T(u) = (1,2, 3)is u0 = (2, -2, 4,1) 

So the complete solution of the equation T(u) = (1,2, 3) 

is the linear variety (2, -2, 4,1)+ N(T)  

 i.e. The set  (2, -2, 4,1)+ {(𝑎, −𝑎, 𝑎, 𝑎)/𝑎 ∈ 𝑅} 

Which is same as {(𝑎 + 2), −(𝑎 + 2), (𝑎 + 4), (𝑎 + 1)/𝑎 ∈ 𝑅} 

In other words: The T-pre-image (2, 4) of is this linear variety. 

OR 

Let us take 𝑥4 = 0  then we get 𝑥1 = 1, 𝑥2 = −1, 𝑥3 = 3 

Then we get one particular solution of T(u) = (1,2, 3)is u0 = (1, -1, 3,0) 
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Example-4 Let T: R4→R3 be a linear transformation defined byT(e1) =  𝑓1, T(e2) =
𝑓2, T(e3) = 𝑓1 + 𝑓2and T(e4) = −𝑓2 − 𝑓3. Where {𝑒1, 𝑒2, 𝑒3, 𝑒4}  is the 

standard basis for R4 and {𝑓1, 𝑓2, 𝑓3} is the standard basis for R3 then solve the 

equation T(u) = (1, 2, 3). 

Solution: Frist calculate the value of T(u)  

i.e. 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4)  Here u= (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4. 

Since T is a linear map 

∴  𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥1 T(e1) + 𝑥2T(e2) + 𝑥3T(e3) + 𝑥4T(e4) 

                   =  𝑥1 𝑓1 + 𝑥2𝑓2 + 𝑥3(𝑓1 + 𝑓2) + 𝑥4(−𝑓2 − 𝑓3) (Put the given 

values) 

                   =   (𝑥1 + 𝑥3)𝑓1 + (𝑥2 + 𝑥3−𝑥4)𝑓2 + (−𝑥4)𝑓3  

                   =   ((𝑥1 + 𝑥3), (𝑥2 + 𝑥3 − 𝑥4) , (−𝑥4)). (𝑓1, 𝑓2, 𝑓3)  

  𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ((𝑥1 + 𝑥3), (𝑥2 + 𝑥3 − 𝑥4) , (−𝑥4))  

The associated homogeneous equation leads to the equations 

i.e. 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 0 

𝑥1 + 𝑥3 = 0, 𝑥2 + 𝑥3 − 𝑥4 = 0, −𝑥4 = 0. 

Solving these, we get  𝑥1 = −𝑥3 , 𝑥2 = −𝑥3, 𝑥4 = 0 

 Thus, the kernel of T is the set of all vectors of form(−𝑥3, −𝑥3, 𝑥3, 0), 

If we take 𝑥3 = 𝑎∀𝑎 ∈ 𝑅 

 N(T) = [(−a, −a, a, 0)]  i.e. N(T) = [𝑎(−1, −1,1,0)]   

∴ N(T) = [(−1, −1,1,0)] 

Now find T(u) = (1, 2, 3). 

Since T(u) = 𝑇(𝑥1, 𝑥2, 𝑥3, 𝑥4) = ((𝑥1 + 𝑥3), (𝑥2 + 𝑥3 − 𝑥4) , (−𝑥4))  

∴((1, 2, 3).= ((𝑥1 + 𝑥3), (𝑥2 + 𝑥3 − 𝑥4) , (−𝑥4))  

Thus we get, 𝑥1 + 𝑥3 = 1 , 𝑥2 + 𝑥3 − 𝑥4 = 2, −𝑥4 = 3 

Let us take 𝑥1 = 1 − 𝑥3, 𝑥2 = −1 − 𝑥3, 𝑥4 = −3. 

If we take 𝑥3 = 0,then 𝑥1 = 1, 𝑥2 = −1, 𝑥4 = −3 

Then we get one particular solution of T(u) = (1, 2, 3) is u0 = (1, -1, 0, -3) 

So the complete solution of the equation T T(u) = (1, 2, 3) 

is the linear variety (1, -1, 0, -3)+ N(T)  

 i.e. The set  (1, -1, 0, -3)+ {(−a, −a, a, 0)/𝑎 ∈ 𝑅}, 

Which is same as {(−𝑎 + 1, −𝑎 − 1, 𝑎, −3)/𝑎 ∈ 𝑅} 

In other words: The T-pre-image (1, 2, 3) of is this linear variety. 

 

Linear Functional 

 

Definition:-Linear Functional: 

Let V be a vector space over a field K or R. A linear transformation F: 

V→K is called a linear functional (or linear form) on V. 

OR 

A map F: V→K is called a linear functional (or linear form) on V if the 

following condition is satisfied. 

(1) F(au + bv) = aF(u) + b(F(v)    Vvu  ,  and Kba  ,  
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Example:- Let V be the vector space of polynomials p(t) over R. Define a map I: 

V→R given by I(p(t))= 
1

0

)( dtxp . show that  the map I : V→R is a linear 

functional on V. 

Solution:- Let p(t), f(t) V  and Rba  ,  be arbitrary. Then  

I[ap(t)+ bf(t)] =  +

1

0

 bf(t)] [ap(t) dt  =  +
1

0

1

0

  bf(t)ap(t) dtdt  

                                                    =  +

1

0

1

0

  f(t)p(t) dtbdta  

        (  a,b are independent of t and hence they are constants relative to t.) 

 

I[ap(t)+ bf(t)] = aI[p(t)]+ bI[f(t)] 

 

 This proves that I is a linear functional on V. 

 

Example:- Let V be the vector space of polynomials p(t) over R. Define a map D: 

V→R given byD(f)= )(' af .here )(' af  is the differentiable function . Show 

that the map D : V→R is a linear functional on V. 

Solution:- Let p(t), f(t) V  and Rba  ,  be arbitrary. Then  

D[ap(t)+ bf(t)] = 
'bf(t)] [ap(t) +  = (t)bf(t)ap '' +  

        (  a,b are independent of t and hence they are constants relative to t.) 

I[ap(t)+ bf(t)] = aD[p(t)]+ bD[f(t)] 

 This proves that D is a linear functional on V. 

 

Example:- Let V(K) be the vector space of all n×n matrices whose elements belongs 

to K.  Let A=  
nmija


 Define a map T : V→K such that T(A) = 

=

n

i

ija
1

 

   (Note: This T is called trace function.) Show that the function is a linear      

   functional on V. 

Solution:- Let A=  
nmija


 , B=  

nmijb


 V  and Rcb  ,  be arbitrary. Then  

T(A) = 
=

n

i

ija
1

 and T(B) = 
=

n

i

ijb
1

 

bA + cB = b  
nmija


+ c  

nmijb


 =  
nmijij cbba


+  

T(bA + cB) = )(
1


=

+
n

i

ijij cbba =  
= =

+
n

i

n

i

ijij bcab
1 1

  = b T(A)+ c T(B) 

T(bA + cB) = b T(A)+ c T(B) 

This proves that T is linear functional on V. 

 

Example:- Let V(K) be the vector space, then show that  the map T : V→K such that 

T(x) = 0 Vx is a linear functional on V. 

Solution:- Let x,y V  and a,b K  then  ax +by V  
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T(ax +by) = 0 = 0 + 0 = a.0 +b.0 = aT(x)+bT(y)  

T(ax +by) = aT(x)+bT(y) 

This proves that T is linear functional on V. 

Note: This linear functional is called zero functional and is denoted by 0. 

 

Example:- Consider the vector space Rn. Let a1,a2,a3,..an are fixed real numbers  and  

𝑢 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑛.Prove that the function 𝑓: 𝑅𝑛 → 𝑅 defined by 

 𝑓(𝑢) = 𝑎1𝑥1 + 𝑎2𝑥2+, … , +𝑥𝑛𝑥𝑛 is a linear functional. 

Solution:- Let 𝑢 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑣 = (𝑦1, 𝑦2, … , 𝑦𝑛) be any two elements of Rn   

and 𝛼, 𝛽 ∈ 𝑅  

∴ 𝛼𝑢 + 𝛽𝑣 = (𝛼𝑥1 + 𝛽𝑦1, 𝛼𝑥2 + 𝛽𝑦2, … , 𝛼𝑥𝑛 + 𝛽𝑦𝑛) 

 

∴ 𝑓(𝛼𝑢 + 𝛽𝑣) = 𝑎1(𝛼𝑥1 + 𝛽𝑦1) + 𝑎2(𝛼𝑥2 + 𝛽𝑦2) … , 𝑎𝑛(𝛼𝑥𝑛 + 𝛽𝑦𝑛)  

                                                                                   (∵By definition of a 

linear functional) 

                         = 𝛼(𝑎1𝑥1 + 𝑎2𝑥2+, … , +𝑎𝑛𝑥𝑛) + 𝛽(𝑎1𝑦1 +
𝑎2𝑦2+, … , +𝑎𝑛𝑦𝑛) 

 

= 𝛼𝑓(𝑢) + 𝛽𝑓(𝑣) 

Thus, we get 𝑓(𝛼𝑢 + 𝛽𝑣) = 𝛼𝑓(𝑢) + 𝛽𝑓(𝑣) 

 

This proves that f  is linear functional on Rn. 

 

 

Dual spaces 

 

Definition: Dual space: 

The set of all linear functional on a vector space V(K) is a vector space 

over the same field with the following definitions of vector addition and 

scalar multiplication: 

(i)(F + G)(u) = F(u) + G(u), u V  and 

(ii) (aF)(u) = a(F)(u) a K  

Here  F and G are linear functional on V. 

This vector space is called the dual space (or conjugate space) of V and is 

denoted by V*. 

We also write L(V, K) = V*. 

Evidently V* = {T/T: V→K }. 

 

Note:-(1)The set of all linear functional on V(K) is a vector space over K. 

(2) If  T : V→R be a linear functional then r(T) = 1and n(T) = dimV-1. 

Because  dimR =1= range of  T = rank of T   

Theorem:-  Let V(K) be a finite dimensional vector space. Then show that dim V* = 

dim V 

Proof:-  Let V be an n- dimensional vector space over a field K.  

Let V* be the dual space of V. i.e. the set of all linear functional on V(K), 

dim V = n, L (V, K) V*, dim K =1 
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We know that dim L(V, U) = dim (V) dim (U) = n.1 = n = dim (V) 

dim V = dim (V) 

 

Definition: Dual basis: 

Let {v1, v2, v3,…,vn} be basis of V over K. Let u1, u2, u3,…,un V be the 

linear functional defined by  

ui(vj) = 






=
=

jiif

jiif
ij

0

1
   then { u1, u2, u3,…,un } is a basis of V*. The 

basis { u1, u2, u3,…,un } is called dual basis. 

 Note:- The symbol ij  is called Kronecker delta. 

 

Example:- Find the dual basis of R2.with respect to the standard basis of R2. 

Solution:- We know that the standard basis of R2 is {e1 = (1, 0) , e2 = (0, 1)} 

Let { u1, u2 } be the  dual basis of R2. 

For this we suppose  

u1(x, y) = ax +by , u2(x, y) = cx +dy such that u1( e1) = 1,  u1( e2) = 0:  

u2( e1) = 0,  u2( e2) = 1:  

Now 1= u1( e1) = u1(1, 0)= a.1 +b.0 = a i.e. a =1 

0= u1( e2) = u1(0, 1)= a.0 +b.1 = b i.e. b =0 

0= u2( e1) = u2(1, 0)= c.1 +d.0 = c i.e. c =0 

1= u2( e2) = u2(0, 1)= c.0 +d.1 = d i.e. d =1 

Hence u1(x, y) = x and u2(x, y) = y 

{ u1(x, y), u2(x, y) } ={x, y} is the dual basis. 

 

Example:- Let {v1 = (2, 3), v2 = (1, 4)}be the basis of R2 then find the dual basis of 

R2 relative to given basis. 

Solution:- here {v1 = (2, 3), v2 = (1, 4)}be the basis of R2. 

Let { u1, u2 } be the  dual basis of R2. 

For this we suppose  

u1(x, y) = ax +by , u2(x, y) = cx + dy such that u1( v1) = 1,  u1( v2) = 0:  

u2( v1) = 0,  u2( v2)  = 1:  

Now 1= u1( v1) = u1(2, 3)= a.2 +b.3  i.e. 2a + 3b  =1 __________(i) 

0= u1( v2) = u1(1, 4)= a.1 +b.4  i.e. a + 4b   =0 __________(ii) 

0= u2( v1) = u2(2, 3) = c.2 +d.3  i.e. 2c +3d =0 ____________(iii) 

1= u2( v2) = u2(1, 4)= c.1 +d.4  i.e. c+4d =1    _____________(iv) 

From (i) & (ii) we get a = 
5

4
 , b = 

5

1−
 

and From (iii) & (iv) we get  c = 
5

3−
 , d = 

5

2
 

Hence u1(x, y) = 
5

4
x +

5

1−
y  and u2(x, y) } =

5

3−
x + 

5

2
 y 

{ u1(x, y), u2(x, y) } ={
5

4
x +

5

1−
y, 

5

3−
x + 

5

2
 y} is the dual basis. 
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Example:- Let {v1 = (0, 1, 1), v2 = (1, 0 , 1) , v3 = (1, 1, 0)}be the basis of R3 then 

find the dual basis of R3 relative to given basis. 

Solution:- here {v1 = (0, 1, 1), v2 = (1, 0 , 1) , v3 = (1, 1, 0)}be the basis of R3. 

Let { u1, u2 ,u3} be the  dual basis of R3. 

For this we suppose  

u1(x, y, z) = a1x + a2y + a3z , u2(x, y,z) = b1x + b2y + b3z and  

u3(x, y,z) = c1x + c2y + c3z such that  

u1( v1) = 1,  u1( v2) = 0 and u1( v3 )= 0:  

u2( v1) = 0,  u2( v2)  = 1 and u2( v3) = 0:  

u3( v1) = 0,  u3( v2)  = 0 and u3( v3) = 1 

Now 1= u1( v1) = u1(0, 1, 1)= a1.0 + a2.1 + a3.1   

                i.e. a2 + a3 =1 __________(i) 

0= u1( v2) = u1(1, 0 , 1) = a1.1+ a2.0 + a3.1 

 i.e. a1 + a3   =0 __________(ii) 

0= u1( v3) = u1(1, 1 ,0) = a1.1+ a2.1 + a3.0 

 i.e. a1 + a2   =0 __________(iii) 

From (i), (ii) & (iii) we get a1=
2

1−
,  a2=

2

1
 and a3=

2

1
 

 

0= u2( v1) = u2(0, 1, 1)= b1.0 + b2.1 + b3.1   

                i.e. b2 + b3 =0 __________(i) 

1= u2( v2) = u2(1, 0 , 1) = b1.1+ b2.0 + b3.1 

 i.e. b1 + b3   =1 __________(ii) 

0= u2( v3) = u2(1, 1 ,0) = b1.1+ b2.1 + b3.0 

 i.e. b1 + b2   =0 __________(iii) 

From (i), (ii) & (iii) we get b1=
2

1
,  b2 = 

2

1−
and b3 =

2

1
 

 

0= u3( v1) = u3(0, 1, 1)= c1.0 + c2.1 + c3.1   

                i.e. c2 + c3 = 0 __________(i) 

0= u3( v2) = u3(1, 0 , 1) = c1.1+ c2.0 + c3.1 

 i.e. c1 + c3   =0 __________(ii) 

1= u3( v3) = u3(1, 1 ,0) = c1.1+ c2.1 + c3.0 

 i.e. c1 + c2   =1 __________(iii) 

From (i), (ii) & (iii) we get c1=
2

1
,  c2 = 

2

1
and c3 =

2

1−
 

 

Hence u1(x, y, z) =
2

1−
x + 

2

1
 y + 

2

1
z , u2(x, y,z) = 

2

1
x + 

2

1−
y + 

2

1
z and  

u3(x, y,z) = 
2

1
x + 

2

1
y + 

2

1−
z 

{ u1(x, y, z) u2(x, y,z) u3(x, y,z)}   

={ 
2

1−
x + 

2

1
 y + 

2

1
z , 

2

1
x + 

2

1−
y + 

2

1
z,

2

1
x + 

2

1
y + 

2

1−
z} is the dual 

basis. 
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Example: Find the dual basis of the basis { (1, 1, 0), (2, 1 , 0), (0, 0, 1)} of the space 

R3. 

Answer: { u1(x, y, z) u2(x, y,z) u3(x, y,z)}   

{ 
2

1−
x + 

2

1
 y + 

2

1
z , 

2

1
x + 

2

1−
y + 

2

1
z,

2

1
x + 

2

1
y + 

2

1−
z} is the dual basis. 

 

Example: Find the dual basis of the basis { (1,-1, 1), (-1, 1, 1), (1, 1, -1b   )} of the 

space R3. 

Answer: { u1(x, y, z) u2(x, y,z) u3(x, y,z)}   

=={ 
2

1
 x + 

2

1
z , 

2

1
y+ 

2

1
z,

2

1
x + 

2

1
z} is the dual basis. 

Dual of Dual 

 

Definition:- Dual of Dual or second Dual space: 

For a given vector space V, its dual space V* is also a vector space and 

hence we can have its dual (V*)*. We denote it by V** and called the 

second dual of V or dual of dual of V. 

 

Note:- If dim V = n then dim V = dim V* = dim V** 

         i.e. dim V= dim V** 

 

Theorem:-( dual basis existence theorem) Let V be an n-dimensional vector space 

and let B = { x1, x2,...xn}be a  basis of V. Then prove that there is a uniquely 

determined basis B* = {f1, f2, f3, …,fn}of V* such that fi(xi) = ij   i,j = 1, 2, 

3, …,n. 

Proof: B = { x1, x2,...xn}be a  basis of V and (1,0,0,0,---,0) is an ordered set of n 

scalars, then there exists a unique linear functional  f1 on V such that  

f1(x1) = 1, f2(x2) = 0, f3(x3) = 0,…, fn(xn) = 0. 

In fact 

For each  i = 1, 2, 3,…,n there exists a unique linear functional fi on V such 

that  

fi(xi) = ij   i,j = 1, 2, 3, …,n. 

Let B* = {f1, f2, f3, …,fn} 

We shall show that B* is a basis of V*. 

For this, first we show that B* is linearly independent.  

Let 
1  f1+ 2  f2+ 3  f3+ ….+ n  fn = 0  ∀𝛼𝑖𝜖𝑅, 𝑖 = 1,2,3, … , 𝑛 

 (
1  f1+ 2  f2+ 3  f3+ ….+ n  fn)(x) = 0(x) ∀𝑥𝜖𝑉 

1  f1(x) +
2  f2(x) + 3  f3(x) + ….+ n  fn)(x) = 0 

i.e. ∑ 𝛼𝑖𝑓𝑖(𝑥𝑗)𝑛
𝑖=1 = 0, ∀ 𝑗 = 1,2,3, … , 𝑛 

⇒∑ 𝛼𝑖𝛿𝑖𝑗
𝑛
𝑖=1 = 0 

⇒ 𝛼𝑖 = 0, = 1,2,3, … , 𝑛 

Hence B* is linearly independent. 
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Examples of finding bases for R2 and R3 from their given bases through 

the Dual Basis Existence Theorem. 

 

Example:-1 The set  B = {(1,1,0), (2,1,0), (0,0,1)} is a basis of the vector space R3. 

Find the dual basis of V*. 

Solution:- 

Let 𝑥1 = (1,1,0), 𝑥2 = (2,1,0), 𝑥3 = (0,0,1) then B = { x1, x2,x3} 

Suppose the dual basis of  B is B* = = {f1, f2, f3} 

Clearly,  

f1(x1) = 1, f1(x2) = 0, f1(x3) = 0,  

f2(x1) = 0, f2(x2) = 1, f2(x3) = 0 

f3(x1) = 0, f3(x2) = 0, f3(x3) = 1     [∵ 𝑓𝑖(𝑥𝑗) = 𝛿𝑖𝑗  i,j = 1, 2, 3, …,n.  ⇒

𝑓1(𝑥1) = 𝛿𝑖𝑗 = 1           

                                                                                                   and  𝑓1(𝑥2) =
𝛿12 = 0]  

Let (a, b, c)ϵR3 such that  
(𝑎, 𝑏, 𝑐) = 𝛼𝑥1 + 𝛽𝑥2 + 𝛾𝑥3 

              = 𝛼(1,1,0) + 𝛽(2,1,0) + 𝛾(0,0,1) 

(𝑎, 𝑏, 𝑐) = (𝛼 + 2𝛽, 𝛼 + 2𝛽, 𝛾) 

∴ 𝑎 = 𝛼 + 2𝛽, 𝑏 = 𝛼 + 2𝛽, 𝑐 = 𝛾 

Solving these equations then we get the values 

∴ 𝛼 = 2𝑏 − 𝑎, 𝛽 = 𝑎 − 𝑏, 𝛾 = 𝑐 

∴ (𝑎, 𝑏, 𝑐) = (2𝑏 − 𝑎)𝑥1 + (𝑎 − 𝑏)𝑥2 + 𝑐𝑥3 

∴ 𝑓1(𝑎, 𝑏, 𝑐) = (2𝑏 − 𝑎)𝑓1(𝑥1) + (𝑎 − 𝑏)𝑓1(𝑥2) + 𝑐𝑓1(𝑥3) [ ∵ 𝑓1 is linear 

map] 

∴ 𝑓1(𝑎, 𝑏, 𝑐) = (2𝑏 − 𝑎). 1 + (𝑎 − 𝑏). 0 + 𝑐. 0 = (2𝑏 − 𝑎) 

∴ 𝑓1(𝑎, 𝑏, 𝑐) = (2𝑏 − 𝑎) 

 

Similarly, 

∴ 𝑓2(𝑎, 𝑏, 𝑐) = (2𝑏 − 𝑎)𝑓2(𝑥1) + (𝑎 − 𝑏)𝑓2(𝑥2) + 𝑐𝑓2(𝑥3) [ ∵ 𝑓2 is linear 

map] 

∴ 𝑓2(𝑎, 𝑏, 𝑐) = (2𝑏 − 𝑎). 0 + (𝑎 − 𝑏). 1 + 𝑐. 0 = (𝑎 − 𝑏) 

∴ 𝑓2(𝑎, 𝑏, 𝑐) = (𝑎 − 𝑏) 

and 

∴ 𝑓3(𝑎, 𝑏, 𝑐) = (2𝑏 − 𝑎)𝑓3(𝑥1) + (𝑎 − 𝑏)𝑓3(𝑥2) + 𝑐𝑓3(𝑥3) [ ∵ 𝑓3 is linear 

map] 

∴ 𝑓3(𝑎, 𝑏, 𝑐) = (2𝑏 − 𝑎). 0 + (𝑎 − 𝑏). 0 + 𝑐. 1 = 𝑐 

∴ 𝑓3(𝑎, 𝑏, 𝑐) = 𝑐 

∴ B* is the dual basis of B. 

∴ B* = = {f1, f2, f3} 

i.e B*= {(2𝑏 − 𝑎), (𝑎 − 𝑏), 𝑐} is the required dual basis. 

 

 

Example:-2 find the dual basis of the basis B = {(0,1,1), (1,0,1), (1,1,0)} of the 

vector space R3.  

Solution:- 
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Let 𝑥1 = (0,1,1), 𝑥2 = (1,0,1), 𝑥3 = (1,1,0) then B = { x1, x2,x3} 

Suppose the dual basis of  B is B* = = {f1, f2, f3} 

Clearly,  

f1(x1) = 1, f1(x2) = 0, f1(x3) = 0,  

f2(x1) = 0, f2(x2) = 1, f2(x3) = 0 

f3(x1) = 0, f3(x2) = 0, f3(x3) = 1     [∵ 𝑓𝑖(𝑥𝑗) = 𝛿𝑖𝑗  i,j = 1, 2, 3, …,n.  ⇒

𝑓1(𝑥1) = 𝛿𝑖𝑗 = 1           

                                                                                                   and  𝑓1(𝑥2) =
𝛿12 = 0]  

Let (a, b, c)ϵR3 such that  
(𝑎, 𝑏, 𝑐) = 𝛼𝑥1 + 𝛽𝑥2 + 𝛾𝑥3 

 

              = 𝛼(0,1,1) + 𝛽(1,0,1) + 𝛾(1,1,0) 

 

(𝑎, 𝑏, 𝑐) = (𝛽 + 𝛾, 𝛼 + 𝛾, 𝛼 + 𝛽) 

 

∴ 𝑎 = 𝛽 + 𝛾, 𝑏 = 𝛼 + 𝛾, 𝑐 = 𝛼 + 𝛽 

Solving these equations then we get the values 

 

∴ 𝛼 =
𝑏 + 𝑐 − 𝑎

2
, 𝛽 =

𝑎 + 𝑐 − 𝑏

2
, 𝛾 =

𝑎 + 𝑏 − 𝑐

2
 

 

∴ (𝑎, 𝑏, 𝑐) =
𝑏 + 𝑐 − 𝑎

2
𝑥1 +

𝑎 + 𝑐 − 𝑏

2
𝑥2 +

𝑎 + 𝑏 − 𝑐

2
𝑥3 

 

∴ 𝑓1(𝑎, 𝑏, 𝑐) =
𝑏+𝑐−𝑎

2
𝑓1(𝑥1) +

𝑎+𝑐−𝑏

2
𝑓1(𝑥2) +

𝑎+𝑏−𝑐

2
𝑓1(𝑥3) [ ∵ 𝑓1 is linear 

map] 

 

∴ 𝑓1(𝑎, 𝑏, 𝑐) =
𝑏 + 𝑐 − 𝑎

2
. 1 +

𝑎 + 𝑐 − 𝑏

2
. 0 +

𝑎 + 𝑏 − 𝑐

2
. 0 =

𝑏 + 𝑐 − 𝑎

2
 

 

∴ 𝑓1(𝑎, 𝑏, 𝑐) =
𝑏 + 𝑐 − 𝑎

2
 

 

Similarly, 

∴ 𝑓2(𝑎, 𝑏, 𝑐)
𝑏+𝑐−𝑎

2
𝑓2(𝑥1) +

𝑎+𝑐−𝑏

2
𝑓2(𝑥2) +

𝑎+𝑏−𝑐

2
𝑓2(𝑥3) [ ∵ 𝑓2 is linear 

map] 

 

∴ 𝑓2(𝑎, 𝑏, 𝑐) =
𝑏 + 𝑐 − 𝑎

2
. 0 +

𝑎 + 𝑐 − 𝑏

2
. 1 +

𝑎 + 𝑏 − 𝑐

2
. 0 =

𝑎 + 𝑐 − 𝑏

2
 

 

∴ 𝑓2(𝑎, 𝑏, 𝑐) =
𝑎 + 𝑐 − 𝑏

2
 

and 

∴ 𝑓3(𝑎, 𝑏, 𝑐) =
𝑏+𝑐−𝑎

2
𝑓3(𝑥1) +

𝑎+𝑐−𝑏

2
𝑓3(𝑥2) + 𝑐𝑓3(𝑥3) [ ∵ 𝑓3 is linear map] 
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∴ 𝑓3(𝑎, 𝑏, 𝑐) =
𝑏 + 𝑐 − 𝑎

2
. 0 +

𝑎 + 𝑐 − 𝑏

2
. 0 +

𝑎 + 𝑏 − 𝑐

2
. 1 =

𝑎 + 𝑏 − 𝑐

2
 

 

∴ 𝑓3(𝑎, 𝑏, 𝑐) =
𝑎 + 𝑏 − 𝑐

2
 

 

∴ B* is the dual basis of B. 

 

∴ B* = = {f1, f2, f3} 

 

i.e B*= {
𝑏+𝑐−𝑎

2
,

𝑎+𝑐−𝑏

2
,

𝑎+𝑏−𝑐

2
} is the required dual basis. 

 

 

Example:-3 find the dual basis of the basis B = {(2,3), (1,4)} of the vector space R2.  

Solution:- 

Let 𝑥1 = (2,3), 𝑥2 = (1,4) then B = { x1, x2} 

Suppose the dual basis of  B is B* = = {f1, f2} 

Clearly,  

f1(x1) = 1, f1(x2) = 0,   

f2(x1) = 0, f2(x2) = 1,  

 [∵ 𝑓𝑖(𝑥𝑗) = 𝛿𝑖𝑗  i,j = 1, 2, 3, …,n.  ⇒ 𝑓1(𝑥1) = 𝛿𝑖𝑗 = 1           

                                                                                                   and  𝑓1(𝑥2) =
𝛿12 = 0]  

Let (a, b)ϵR2 such that  
(𝑎, 𝑏) = 𝛼𝑥1 + 𝛽𝑥2 

          = 𝛼(2,3) + 𝛽(1,4) 

 

(𝑎, 𝑏) = (2𝛼 + 𝛽, 3𝛼 + 4𝛽) 

 

∴ 𝑎 = 2𝛼 + 𝛽, 𝑏 = 3𝛼 + 4𝛽 

Solving these equations then we get the values 

 

∴ 𝛼 =
4𝑎 − 𝑏

5
, 𝛽 =

2𝑏 − 3𝑎

5
 

 

∴ (𝑎, 𝑏) =
4𝑎 − 𝑏

5
𝑥1 +

2𝑏 − 3𝑎

5
𝑥2 

 

∴ 𝑓1(𝑎, 𝑏) =
4𝑎−𝑏

5
𝑓1(𝑥1) +

2𝑏−3𝑎

5
𝑓1(𝑥2) [ ∵ 𝑓1 is linear map] 

 

∴ 𝑓1(𝑎, 𝑏) =
4𝑎 − 𝑏

5
. 1 +

2𝑏 − 3𝑎

5
. 0 =

4𝑎 − 𝑏

5
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∴ 𝑓1(𝑎, 𝑏) =
4𝑎 − 𝑏

5
 

 

Similarly, 

∴ 𝑓2(𝑎, 𝑏)
4𝑎−𝑏

5
𝑓2(𝑥1) +

2𝑏−3𝑎

5
𝑓2(𝑥2) [ ∵ 𝑓2 is linear map] 

 

∴ 𝑓2(𝑎, 𝑏) =
4𝑎 − 𝑏

5
. 0 +

2𝑏 − 3𝑎

5
. 1 =

2𝑏 − 3𝑎

5
 

 

∴ 𝑓2(𝑎, 𝑏, 𝑐) =
2𝑏 − 3𝑎

5
 

 

∴ B* is the dual basis of B. 

 

∴ B* = = {f1, f2, } 

 

i.e B*= {
4𝑎−𝑏

5
,

2𝑏−3𝑎

5
} is the required dual basis. 

Example:-4 find the dual basis of the basis B = {(1, −1,1), (−1,1,1), (1,1, −1)} of 

the vector space R3.  

Ans:- B*= {
𝑎+𝑐

2
,

𝑏+𝑐

2
,

𝑎+𝑏

2
} 

 

Example:-5find the dual basis of the basis B = {(1,1,1), (1,0, −1), (0,3,4)} of the 

vector space R3.  

Ans:- B*= {
3𝑎−4𝑏+3𝑐

2
,

−𝑎+4𝑏−3𝑐

2
,

−𝑎+2𝑏−𝑐

2
} 

Example:-5find the dual basis of the basis B = {(1, −1,2), (3,0,1), (0,1, −1)} of the 

vector space R3.  

Ans:- B*= {
3𝑏−𝑎+3𝑐

2
,

𝑎−𝑏−𝑐

2
,

5𝑏−𝑎+3𝑐

2
} 

 

Definition:- Annihilators : 

Let W be a subset of a vector space V over a field k and V* its dual. Let W 

be a subset of V which is not necessarily a subspace. Then a linear 

functional 𝑓𝜖𝑉∗ is called an annihilator of W if 𝑓(𝑥) = 0 for every xϵW. 

 It is denoted by W0. 

i.e. The set of all linear functional f on V such that 𝑓(𝑥) = 0 for every xϵV. 

i.e.  𝑓(𝑤) = 0, is called an annihilator of W. 

Also W0 = {𝑓𝜖𝑉∗: 𝑓(𝑥) = 0∀𝑥 ∈ 𝑉} 

 

Note:- Annihilator of V is the zero functional on V. and {0}0 = 𝑉∗. 

 

Theorem:-  Let W be a non-empty subset of a vector space V. Then prove that the 

annihilator W0of W is subspace of  𝑉∗.  (OR)   Prove that the W0 is 

subspace of  𝑉∗. 

Proof:- By the definition of W0, 

It is clear that 0 ∈ W0 and W0 ⊆ 𝑉∗. 
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Now suppose 𝜙1,𝜙2 ∈ W0 and for any scalars 𝑎, 𝑏 ∈ 𝑅 and for any 𝛼 ∈ 𝑊, 
 

             (𝑎𝜙1+𝑏𝜙2)(𝛼) = 𝑎𝜙1(𝛼)+𝑏𝜙2(𝛼)        

                                        = 𝑎. 0 + 𝑏. 0     (∵ 𝜙1,𝜙2 ∈ W0) 

                                        =   0 

∴ 𝑎𝜙1+𝑏𝜙2 ∈ W0 

Hence, W0 is subspace of  𝑉∗. 

 

Note:- W0 is subspace of  𝑉∗, whether W is a subspace of V or not. 

 

Theorem:- Let V be a finite dimensional vector space over the field F and let W be a      

                   subspace of V. Then Prove that dim W + dim W0 = dim V. 

(OR) If W is an m-dimensional subspace of an n-dimensional vector space 

V. then show   that the annihilator W0 is an (n-m) dimensional subspace of 

𝑉∗. 

Proof:- 

  Let V be a finite dimensional vector space over the field F. 

Let dimW = m 

Let W be a subspace of V. Then W0 is subspace of  𝑉∗. 

Since W is a subspace of V so that  

dimW ≤dim dimW 

i.e. m≤n. 

Let { x1, x2,...xm}be a  basis of W. 

So it can be extended to form a basis of V. 

Choose vectors xm+1, xm+2,... xn in V such that B = { x1, x2,...xm , xm+1, xm+2,... 

xn }is basis of V. 

Let {f1, f2, f3, …,fn}be basis of 𝑉∗ which is the dual to B. 

Now we claim that { fm+1, fm+2,... fn } is basis of W0. 

Obviously, 𝑓𝑖 ∈ W0, ∀𝑖 ≥ 𝑚 + 1   because 𝑓𝑖(𝑥𝑗)𝛿𝑖𝑗 = {
0   𝑖 ≠ 𝑗
1   𝑖 = 𝑗

 

And 𝛿𝑖𝑗 = 0  if 𝑖 ≥ 𝑚 + 1    and j≤m. 

Since { fm+1, fm+2,... fn } is a subset of linearly independent  

Now we show that { fm+1, fm+2,... fn } spans W0. 

Let 𝑓 ∈ W0 be an arbitrary linear functional, 

So that 𝑓(𝑥𝑖) =  0 for 1 ≤ i ≤ m    _________(1) 

W0 ⊆ 𝑉∗ and  𝑓 ∈ 𝑉∗ 

But {f1, f2, f3, …,fn} generates 𝑉∗. 

∴ 𝑓 = ∑ 𝑓(𝑥𝑖)𝑓𝑖

𝑛

𝑖=1

 

 = 𝑓(𝑥1)𝑓1 + 𝑓(𝑥2)𝑓2 + ⋯ + 𝑓(𝑥𝑚)𝑓𝑚 + 𝑓(𝑥𝑚+1)𝑓𝑚+1 + 𝑓(𝑥𝑚+2)𝑓𝑚+2 +
⋯ + 𝑓(𝑥𝑛)𝑓𝑛 

 

= 𝑓(𝑥𝑚+1)𝑓𝑚+1 + 𝑓(𝑥𝑚+2)𝑓𝑚+2 + ⋯ + 𝑓(𝑥𝑛)𝑓𝑛 =  ∑ 𝑓(𝑥𝑖)𝑓𝑖
𝑛
𝑖=𝑚+1   

 

This shows that { fm+1, fm+2,... fn }} spans W0. 
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Thus, { fm+1, fm+2,... fn } is basis of W0. 

Accordingly, 

dim W0 = n – m = dim V - dim W. 

 

Corollary:-If W and W1 are two subspaces of a vector space V which are annihilated 

by the subspace W0then dimW = dimW1.  

Proof:-  W and W1 are two both annihilated by the subspace W0and both are 

subspaces of V then we have 

dim W + dim W0 = dim V   _______________(1) 

dim W1 + dim W0 = dim V  _______________(2) 

Now subtract (2) from (1) then we get 

 dim W = dim W1 

 

Theorem:- If W and W1 are two subspaces of a  finite dimensional vector space V, 

then  W1 = W2   if and only if W1
0 = W2

0 . 

Proof:-  If  W1 = W2   then obviously W1
0 = W2

0. 

Let us suppose that W1 ≠ W2     

Then there is at least one vector W1in which not in W2.  

Suppose 𝑥 ∈ W2 and 𝑥 ∉W1 

Then there a linear functional f such that f(y) = 0 𝑦 ∈ 𝑊  but f(x) ≠ 0   

This implies that 𝑓 ∈W1
0 ,but  𝑓 ∉W2

0  and thus W1
0 ≠ W2

0. 

Hence W1
0 = W2

0 if W1 = W2    

 

Bilinear forms 

 

Definition:- Bilinear form (or) 2-Form: (or) bilinear functional   

Suppose VC is finite dimensional  vector space over a field R. Let 

𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝑉 and 𝑎, 𝑏 ∈ 𝑅 be arbitrary. A mapping 𝑇: 𝑉 × 𝑉 → 𝑅 is a 

bilinear (or bilinear functional) on V. if following are satisfied: 

(i) T(u, 𝑎𝑣1 + 𝑏𝑣2) =  𝑎. 𝑇(𝑢, 𝑣1) + 𝑏. 𝑇(𝑢, 𝑣2) 

(ii) T(u, 𝑎𝑣1 + 𝑏𝑣2) = 𝑎. 𝑇(𝑢, 𝑣1) + 𝑏. 𝑇(𝑢, 𝑣2) 

 

Note:- →We express condition (i) by saying f is linear in its first variable (co-

ordinate) and  condition (ii) by saying f is linear  in its second variable (co-

ordinate). 

→ Such mapping f id also known as Sesqui-linear form. 

 

Example:  

Prove that the zero function from  𝑇: 𝑉 × 𝑉 → 𝑅 is a bilinear on V.  

i.e. Let from  𝑇: 𝑉 × 𝑉 → 𝑅 defined by from  𝑇(𝑢, 𝑣, ) = 0, ∀𝑢, 𝑣 ∈ 𝑉 is 

bilinear on V. 

Solution: 

Let  𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝑉 and 𝑎, 𝑏 ∈ 𝑅 

∴ 𝑇(𝑢1, 𝑣) = 𝑇(𝑢2, 𝑣) = 𝑇(𝑢, 𝑣1) = 𝑇(𝑢, 𝑣2) = 0 

 

Since T(u, 𝑎𝑣1 + 𝑏𝑣2) = 0 
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                                       = 𝑎. 0 + 𝑏. 0 

                                       = 𝑎. 𝑇(𝑢, 𝑣1) + 𝑏. 𝑇(𝑢, 𝑣2) 

Similarly,  

           T(𝑎𝑢1 + 𝑏𝑢2, 𝑣) = 0 

                                       = 𝑎. 0 + 𝑏. 0 

                                       = 𝑎. 𝑇(𝑢1, 𝑣) + 𝑏. 𝑇(𝑢2, 𝑣) 

∴ 𝑇 is bilinear form. 

 

Example: Let V= R3. Suppose u =(x1,x2,x3) and v = (y1,y2,y3) R3 and defined by 

𝑓(𝑢, 𝑣) = 𝑥1𝑦2 − 3𝑥2𝑦3 + 𝑥3𝑦1 then Show that f is a bilinear for. 

Solution:- 

Let 𝑢 = (𝑥1𝑥2, 𝑥3) , 𝑣 = (𝑦1𝑦2, 𝑦3)and 𝑤 = (𝑧1𝑧2, 𝑧3)R3 and 𝑎, 𝑏 ∈ 𝑅 

∴ 𝑎𝑢 + 𝑏𝑤 = (𝑎𝑥1 + 𝑏𝑧1, 𝑎𝑥2 + 𝑏𝑧2, 𝑎𝑥3 + 𝑏𝑧3) 

Now, 

 𝑓(𝑎𝑢 + 𝑏𝑤, 𝑣) = (𝑎𝑥1 + 𝑏𝑧1)𝑦2 − 3(𝑎𝑥2 + 𝑏𝑧2)𝑦3 + (𝑎𝑥3 + 𝑏𝑧3)𝑦1 

                          = 𝑎(𝑥1𝑦2 − 3𝑥2𝑦3 + 𝑥3𝑦1) + 𝑏(𝑧1𝑦2 − 3𝑧2𝑦3 + 𝑧3𝑦1) 

                          = 𝑎𝑓(𝑢, 𝑣) + 𝑏𝑓(𝑤, 𝑣) 

Similarly, 

𝑓(𝑢, 𝑎𝑣 + 𝑏𝑤) = 𝑥2(𝑎𝑦2 + 𝑏𝑧2) − 3𝑥2(𝑎𝑦3 + 𝑏𝑧3) + 𝑥3(𝑎𝑦1 + 𝑏𝑧1) 

                          = 𝑎(𝑥1𝑦2 − 3𝑥2𝑦3 + 𝑥3𝑦1) + 𝑏(𝑥1𝑧2 − 3𝑥2𝑧3 + 𝑥3𝑧1) 

                          = 𝑎𝑓(𝑢, 𝑣) + 𝑏𝑓(𝑢, 𝑤) 

 

∴ 𝑓 is bilinear form. 

 

Example: 

Which of the following functions f define on vectors u = (𝑥1, 𝑥2) and v = 

(𝑦1, 𝑦2) in R2 are bilinear form?  

(1)  f(u, v)= x1y2 - x2y1  

(2) f(u, v)= (𝑥1−𝑦1)2 + 𝑥2𝑦2. 

Solution:-(1) 

Let 𝑢 = (𝑥1𝑥2) , 𝑣 = (𝑦1𝑦2)and 𝑤 = (𝑧1𝑧2)R2 and 𝑎, 𝑏 ∈ 𝑅 

∴ 𝑎𝑢 + 𝑏𝑤 = (𝑎𝑥1 + 𝑏𝑧1, 𝑎𝑥2 + 𝑏𝑧2, 𝑎𝑥3 + 𝑏𝑧3)  

And 𝑎𝑦 + 𝑏𝑤 = (𝑎𝑦1 + 𝑏𝑧1, 𝑎𝑦2 + 𝑏𝑧2, 𝑎𝑦3 + 𝑏𝑧3) 

Now, 

 𝑓(𝑎𝑢 + 𝑏𝑤, 𝑣) = (𝑎𝑥1 + 𝑏𝑧1)𝑦2 − (𝑎𝑥2 + 𝑏𝑧2)𝑦1 

                          = 𝑎(𝑥1𝑦2 − 𝑥2𝑦1) + 𝑏(𝑧1𝑦2 − 𝑧2𝑦1) 

                          = 𝑎𝑓(𝑢, 𝑣) + 𝑏𝑓(𝑤, 𝑣) 

Similarly, 

𝑓(𝑢, 𝑎𝑣 + 𝑏𝑤) = 𝑥1(𝑎𝑦2 + 𝑏𝑧2) − 𝑥2(𝑎𝑦1 + 𝑏𝑧1) 

                          = 𝑎(𝑥1𝑦2 − 𝑥2𝑦1) + 𝑏(𝑥1𝑧2 − 𝑥2𝑧1) 

                          = 𝑎𝑓(𝑢, 𝑣) + 𝑏𝑓(𝑢, 𝑤) 

 

∴ 𝑓 is bilinear form. 

Solution:-(2) 

Let 𝑢 = (𝑥1𝑥2) , 𝑣 = (𝑦1𝑦2)and 𝑤 = (𝑧1𝑧2)R2 and 𝑎, 𝑏 ∈ 𝑅 

∴ 𝑎𝑢 + 𝑏𝑤 = (𝑎𝑥1 + 𝑏𝑧1, 𝑎𝑥2 + 𝑏𝑧2, 𝑎𝑥3 + 𝑏𝑧3)  
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And 𝑎𝑦 + 𝑏𝑤 = (𝑎𝑦1 + 𝑏𝑧1, 𝑎𝑦2 + 𝑏𝑧2, 𝑎𝑦3 + 𝑏𝑧3) 

Now, 

 𝑓(𝑎𝑢, 𝑣) = (𝑎𝑥1 − 𝑦1)2 + 𝑎𝑥2𝑦2 

                 = 𝑎2𝑥1
2 − 2𝑎𝑥1𝑦1 + 𝑦1

2 + 𝑎𝑥2𝑦2 ________________(i) 

And       

𝑎𝑓(𝑢, 𝑣) = 𝑎[(𝑥1 − 𝑦1)2 + 𝑥2𝑦2] 
                 = 𝑎𝑥1

2 − 2𝑎𝑥1𝑦1 + 𝑎𝑦1
2 + 𝑎𝑥2𝑦2 ___________________(ii) 

From (i) and (ii)  

𝑓(𝑎𝑢, 𝑣) ≠ 𝑎𝑓(𝑢, 𝑣) 

∴ 𝑓 is not a bilinear form on R2. 

 

Example: 

Let 𝜙 and 𝜓 be linear functional on a vector space V over R. Define a map 

𝑇: 𝑉 × 𝑉 → 𝑅 by the formula 𝑇(𝑢, 𝑣) = 𝜙(𝑢). 𝜓(𝑣) ∀𝑢, 𝑣 ∈ 𝑉 . Then show 

that T is bilinear on V.  

Solution: 

Let  u,v,w∈ 𝑉 and 𝑎, 𝑏 ∈ 𝑅 

∴ 𝑇(𝑎𝑢 + 𝑏𝑤, 𝑣) = 𝜙(𝑎𝑢 + 𝑏𝑤). 𝜓(𝑣) 

                             = [𝑎𝜙(𝑢) + 𝑏𝜙(𝑤)]. 𝜓(𝑣)     (∵ 𝜙 is linear  map. ) 

       = 𝑎𝜙(𝑢). 𝜓(𝑣) + 𝑏𝜙(𝑤). 𝜓(𝑣)  

                             = 𝑎𝑇(𝑢, 𝑣) + 𝑏𝑇(𝑤, 𝑣) 

Similarly,  

           
𝑇(𝑢, 𝑎𝑣 + 𝑏𝑤) = 𝜙(𝑢). 𝜓(𝑎𝑣 + 𝑏𝑤) 

                             = 𝜙(𝑢). [𝑎𝜓(𝑣) + 𝑏𝜓(𝑤)]     (∵ 𝜙 is linear  map. ) 

       = 𝑎𝜙(𝑢). 𝜓(𝑣) + 𝑏𝜙(𝑢). 𝜓(𝑤)  

                             = 𝑎𝑇(𝑢, 𝑣) + 𝑏𝑇(𝑢, 𝑤)  

 

∴ 𝑇 is bilinear form. 

 

Example: 

Define a map 𝑇: 𝑅𝑛 → 𝑅 by the formula 𝑇(𝑢, 𝑣) = ∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1   where 𝑢 =

(𝑎1, 𝑎2, … , 𝑎𝑛) and 𝑣 = (𝑏1, 𝑏2, … , 𝑏𝑛). Then show that T is bilinear on 𝑅𝑛. 

Solution: 

Let  u,v,w∈ 𝑅𝑛 where 𝑢 = (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝑣 = (𝑏1, 𝑏2, … , 𝑏𝑛) and 𝑤 =
(𝑐1, 𝑐2, … , 𝑐𝑛)   and 𝛼, 𝛽 ∈ 𝑅 

∴ 𝑇(𝛼𝑢 + 𝛽𝑤, 𝑣) = ∑(𝛼𝑎𝑖 + 𝛽𝑐𝑖)𝑏𝑖

𝑛

𝑖=1

 

                             = ∑ (𝛼𝑎𝑖𝑏𝑖 + 𝛽𝑐𝑖𝑏𝑖)
𝑛
𝑖=1       

       = 𝛼 ∑ 𝑎𝑖𝑏𝑖 + 𝛽 ∑ 𝑐𝑖𝑏𝑖
𝑛
𝑖=1

𝑛
𝑖=1   

                             = 𝑎𝑇(𝑢, 𝑣) + 𝑏𝑇(𝑤, 𝑣)  

Similarly,            

𝑇(𝑢, 𝑎𝑣 + 𝑏𝑤) = ∑ 𝑎𝑖(𝛼𝑏𝑖 + 𝛽𝑐𝑖)

𝑛

𝑖=1
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                         = ∑ (𝛼𝑎𝑖𝑏𝑖 + 𝛽𝑎𝑖𝑐𝑖)
𝑛
𝑖=1       

              = 𝛼 ∑ 𝑎𝑖 . 𝑏𝑖 + 𝛽 ∑ 𝑎𝑖𝑐𝑖
𝑛
𝑖=1

𝑛
𝑖=1           

                         = 𝑎𝑇(𝑢, 𝑣) + 𝑏𝑇(𝑢, 𝑤)  

∴ 𝑇 is bilinear form. 

 

Note :-  The set of all bilinear forms on V denoted by B(V). 

 


