Sem-III MAT 202: Linear Algebra-I UNIT –2 Linearly dependence

Definition:- Trivial linear combination:

If $u_1, u_2, u_3, \dots, u_n$ are n vectors of a vector space V, then the linear combination $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \dots + \alpha_n u_n$ is called a trivial linear combination. If all the scalars $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are zero.

Definition:- Non-Trivial linear combination:

If $u_1, u_2, u_3, \ldots, u_n$ are n vectors of a vector space V, then the linear combination $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \ldots + \alpha_n u_n$ is called a non-trivial linear combination. If at least one of the scalars $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ is not zero. i.e. at least one of the α 's is not zero.

- e.g. (1) $0u_1+0u_2+0u_3+\ldots+0u_n$ is a trivial linear combination. (2) $0u_1+0u_2+0u_3+\ldots+0u_{n-1}+1u_n$ and $1u_1+2u_2+3u_3+\ldots+nu_n$ is a non trivial linear combination.
- **Note:-** The trivial linear combination of any set of vectors is always the zero vector for $0u_1+0u_2+0u_3+\ldots+0u_n = 0+0+0\ldots+0=0$
- **Example:-** Give an example to show that a nontrivial linear combination of a set of vectors can give the zero vector.
- **Solution:** Example: Let (1, 0,0), (2, 0, 0) and (0, 0, 1) be three vectors in V₃. Then we have $\alpha, \beta, \gamma \in R$ such that α (1, 0,0)+ β (2, 0, 0) + γ (0, 0, 1) = (0, 0, 0) = 0

Thus we get
$$\alpha = 1$$
, $\beta = \frac{-1}{2}$ and $\gamma = 0$
i.e. $1(1, 0, 0) + \frac{-1}{2}(2, 0, 0) + 0(0, 0, 1) = (0, 0, 0) = 0$

thus a nontrivial linear combination may give the zero vector.

Example :- Prove that (1, 0, 0) is a linear combination of (2, 0, 0) and (0, 0, 1). **Solution:-** Let $(1, 0, 0) = \alpha \ (2, 0, 0) + \beta \ (0, 0, 1) \quad \alpha, \beta \in \mathbb{R}$

(1, 0,0) = (2 \alpha, 0, \beta) ∴ 2 \alpha =1 and \beta = 0 ∴ \alpha = $\frac{1}{2}$ and \beta = 0 ∴ the linear combination of (2, 0, 0) and (0, 0, 1) is as (1, 0,0) = $\frac{1}{2}$ (2, 0, 0) +0 (0, 0, 1)

Example:- Prove that the set of vectors $\{ (1, 0, 0), (0, 1, 0), (0, 0, 1) \}$ is trivial linear combination.

2

Solution: Let $\alpha, \beta, \gamma \in R$ such that

 $\alpha (1, 0, 0) + \beta (0, 1, 0) + \gamma (0, 0, 1) = (0, 0, 0)$ $\therefore (\alpha, \beta, \gamma) = (0, 0, 0)$ $\therefore \alpha = \beta = \gamma = 0$

 \therefore given vectors are trivial linear combination.

Definition:- Linearly dependent(L.D.):-

A set { $u_1, u_2, u_3, ..., u_n$ } of vectors is said to be linearly dependent(L.D.) if there exists a nontrivial linear combination of $u_1, u_2, u_3, ..., u_n$ that equals the zero vector.

i.e. The linear combination $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \dots + \alpha_n u_n = 0$ with at least one of scalars $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ is not zero. i.e. at least one of the α 's is not zero.

Definition:- Linearly independent(L.I.):-

A set { $u_1, u_2, u_3, \ldots, u_n$ } of vectors is said to be linearly independent(L.I.) if there exists a trivial linear combination of $u_1, u_2, u_3, \ldots, u_n$ that equals the zero vector.

i.e. The linear combination $\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \dots + \alpha_n u_n = 0$ with all scalars α_1 , $\alpha_2, \alpha_3, \dots, \alpha_n$ zero. i.e. all of the α 's is zero.

Example:- Prove that the vectors (1, 0, 1), (1, 1, 0) and (-1, 0, -1) are L.D. **Solution:-** Let $\alpha, \beta, \gamma \in R$ such that

 $\alpha (1, 0, 1) + \beta (1, 1, 0) + \gamma (-1, 0, -1) = (0, 0, 0)$ $\therefore (\alpha + \beta - \gamma, \beta, \alpha + \beta) = (0, 0, 0)$ $\therefore \alpha + \beta - \gamma = 0, \quad \beta = 0, \quad \alpha + \beta = 0$ Solving these equations then we get $\therefore \beta = 0, \quad \alpha = \gamma$ Thus any nonzero value for α , say 1, then we get 1(1, 0, 1) + 0(1, 1, 0) + 1(-1, 0, -1) = (0, 0, 0)Hence this is a nontrivial linear combination of given vectors. i.e. the vectors (1, 0, 1), (1, 1, 0) and (-1, 0, -1) are L.D.

Example:- Prove that the vectors (1, 0, 1), (1, 1, 0) and (1, 1, -1) are L.I. **Solution:-** Let $\alpha, \beta, \gamma \in R$ such that

 $\alpha (1, 0, 1) + \beta (1, 1, 0) + \gamma (1, 1, -1) = (0, 0, 0)$ $\therefore (\alpha + \beta + \gamma, \beta + \gamma, \alpha - \gamma) = (0, 0, 0)$ $\therefore \alpha + \beta + \gamma = 0, \beta + \gamma = 0 \text{ and } \alpha - \gamma = 0$ $\therefore \alpha = \beta = \gamma = 0$

Hence this is a trivial linear combination of given vectors. i.e. the vectors (1, 0, 1), (1, 1, 0) and (-1, 0, -1) are L.I.

Example:- Check whether the following set of vectors is L.D. or L.I. (1) {(1, 0,1), (1, 1, 0), (1, -1, 1), (1, 2, -3)} (2) $\{e^x, e^{2x}\}$ in $\mathcal{F}^{(\infty)}(-\infty,\infty)$. (3) $\{x, |x|\}$ in $\mathcal{F}(-\infty,\infty)$.

Solution: (1) $\{(1, 0, 1), (1, 1, 0), (1, -1, 1), (1, 2, -3)\}$ Let $\alpha, \beta, \gamma, \delta \in R$ such that $\alpha(1, 0, 1) + \beta(1, 1, 0) + \gamma(1, 1, -1) + \delta(1, 2, -3) = (0, 0, 0)$ $\therefore (\alpha + \beta + \gamma + \delta, \beta - \gamma + 2\delta, \alpha + \gamma - 3\delta) = (0, 0, 0)$ $\therefore \alpha + \beta + \gamma + \delta = 0, \beta - \gamma + 2\delta = 0, \alpha + \gamma - 3\delta = 0$ Solving above equation we get $\therefore \alpha = 5\delta, \beta = -4\delta\gamma = -2\delta, \delta = \delta$ If we take $\delta = 1$ then $\alpha = 5, \beta = -4 \gamma = -2, \delta = 1$ thus $\alpha = \beta = \gamma = \delta \neq 0$ Hence this is a nontrivial linear combination of given vectors. i.e. the set of vectors $\{(1, 0, 1), (1, 1, 0), (1, -1, 1), (1, 2, -3)\}$ is L.D. (2) $\{e^x, e^{2x}\}$ in $\mathcal{G}^{(\infty)}(-\infty,\infty)$. Let $\alpha, \beta \in R$ such that $\alpha e^{x} + \beta e^{2x} = 0$ $x \in (-\infty, \infty)$ ------(1) Differentiate the equation with respect to x, then we get $\alpha e^{x} + 2\beta e^{2x} = 0$ -----(2) Solving equation (1) and (2) then we get $\beta e^{2x} = 0$. since $e^{2x} \neq 0$ $\therefore \beta = 0.$ And we get $\alpha = 0$ $\therefore \beta = \alpha = 0.$ Hence this is a trivial linear combination of given vectors. i.e. the set of vectors $\{e^x, e^{2x}\}$ in $\mathcal{G}^{(\infty)}(-\infty, \infty)$ are L.I. $\{x, |x|\}$ in $\mathcal{F}(-\infty,\infty)$. (3) Let $\alpha, \beta \in R$ such that $\alpha x + \beta |x| = 0$ Since the function |x| is not differentiable at zero. $\therefore \alpha x + \beta |x| = 0$ holds for all $x \in (-1, 1)$ So choosing two different values of x say $x=\frac{1}{2}$ and $x=\frac{-1}{2}$ then we get $\frac{\alpha}{2} + \frac{\beta}{2} = 0$ and $\frac{-\alpha}{2} + \frac{\beta}{2} = 0$ $\therefore \alpha = \beta = 0$ \therefore The set is LI over (-1, 1).

Definition:- The line through *v*:

Given a vector $v \neq 0$, the set of all scalar multiples of v is called the line through v.

Geometrically: In the case of V_1 , V_2 and V_3 . It is nothing but the straight line through the origin and v.

Definition: Collinear:-

Two vectors v_1 and v_2 are collinear if one of them lies in the line through the other.

Note: -0 is collinear with any nonzero vector v.

Definition: Plane through v_1 and v_2 :-

Given Two vectors v_1 and v_2 which are not collinear, their span, namely $[v_1, v_2]$ is called the plane through v_1 and v_2 .

Geometrically: In the case of V_2 and V_3 . It is nothing but the plane passing through the origin and v_1 and v_2 .

Definition: Coplanar:-

Three vectors v_1 , v_2 and v_3 are coplanar if one of them lies in the plane through the other two. e.g. 0 is coplanar with every pair of non collinear vectors.

Example :- Prove that the vectors v and αv of a vector space V are collinear.

Solution: Since αv is a scalar multiple of v.

 $\therefore \alpha v$ lies in the line through v.

The vectors v and are αv collinear.

Example :- Prove that the functions $\sin x$ and $\cos x$ in $\mathcal{F}(I)$ the collinear.

Solution: Since sinx (or cosx) is not a scalar multiple of cosx (or sinx).

- \therefore neither of the two lies in the line through the other.
- \therefore The function sinx and cosx in $\mathcal{F}(I)$ are not collinear.
- Note:- It spane, namely, $[\sin x, \cos x] = \{\alpha \sin x + \beta \cos x/\alpha, \beta \text{ any scalar}\}\$ is the plane through the vectors $\sin x$ and $\cos x$.
- **Example :-** The function $\sin x$, $\cos x$, $\tan x$ in $\mathcal{F}(I)$ are obviously not coplanar because none of them lies in the plane through the other two.

Example:- Prove that the functions cos^2x , sin^2x , cos2x are coplanar. **Solution:-** Since $cos2x = cos^2x - sin^2x$

 $\therefore \cos 2x$ lies in the plane through $\cos^2 x$ and $\sin^2 x$. also $\cos 2x$ is linear combination of $\cos^2 x$ and $\sin^2 x$.

 \therefore the functions $\cos^2 x$, $\sin^2 x$, $\cos 2x$ are coplanar.

Theorem:- Let V be any vector space. Then

(a) The set $\{v\}$ is LD iff v = 0.

- (b) The set $\{v_1, v_2\}$ is LD iff v_1 and v_2 are coplanar. i.e. one of them is a scalar multiple of other.
- (c) The set $\{v_1, v_2, v_3\}$ is LD iff v_1, v_2 and v_3 are coplanar.

i.e. one of them is a scalar multiple of other two.

Proof:- (a)The set $\{v\}$ is LD iff there exists a nonzero scalar α such that $\alpha v = 0$ Since $\alpha \neq 0 \Rightarrow v = 0$.

(b) suppose the set $\{v_1, v_2\}$ is L. D. \therefore there exist $\propto, \beta \in R$ with let $\propto \neq 0$ Such that $\propto v_1 + \beta v_2 = 0$ $\therefore v_1 = -\frac{\beta}{\alpha}v_2$ v_1 is scalar multiple of v_2 . \therefore V₁ is lies in the line through v_2 . v_1, v_2 are collinear. Conversely, let us suppose that v_1, v_2 are collinear. \therefore one of them say v_1 lies in the line through v_2 . v_1 is scalar multiple of v_2 $\therefore v_1 = \propto v_2$ i.e. $1.v_1 - \propto v_2 = 0$ since $1 \neq 0$ \therefore v_1 and v_2 are L. D. (c) Let us suppose that $\{v_1, v_2, v_3\}$ is L. D. $\therefore \propto, \beta, \gamma \in R$ with at least one of them say $\propto \neq 0$ Such that $\propto v_1 + \beta v_2 + \gamma v_3 = 0$ $\therefore v_1 = \left(\frac{-\beta}{\alpha}\right) v_2 + \left(\frac{\gamma}{\alpha}\right) v_3$ i.e. $v_1 \in [v_1, v_3]$ \therefore V₁ lies in the plane through v_2 and v_3 . \therefore v₁, v₂ and v₃ are coplanar. Conversely, Let us suppose that v_1, v_2 and v_3 are coplanar \therefore one of them, say $v_1 \in [v_2, v_3]$ i.e. $v_1 = \alpha_2 v_2 + \alpha_3 v_3 \quad \forall \alpha_2, \alpha_3 \in \mathbb{R}.$ $\therefore 1.v_1 - \alpha_2 v_2 - \alpha_3 v_3 = 0$ Since $1 \neq 0$ \therefore v₁, v₂ and v₃ are L. D. Explain by illustration for above theorem. Let us consider the three vectors (1,1,1), (1,-1,1) and (3,-1,3)They are L. D. Because 1(1,1,1)+2(1,-1,1)-1(3,-1,3)=0 \therefore the plane through (1,1,1) and (3,-1,3) contains the point (1,-1,1). As the plane through (1,1,1) and (3,-1,3) is $[(1,1,1),(3,-1,3)] = \alpha(1,1,1) + \beta(3,-1,3)$ $\forall, \alpha, \beta \in R$

$$= \left\{ \alpha + 3\beta, \alpha - \beta, \alpha + \frac{3\beta}{\alpha}, \beta \in R \right\}$$

Let
$$(1,-1,1) \in [(1,1,1), (3,-1,3)]$$

 $\therefore (1,-1,1) = \alpha(1,1,1) + \beta(3,-1,3)$
 $\therefore \alpha + 3\beta = 1, \ \alpha - \beta = -1, \ \alpha + 3\beta = 1$
 $\therefore \alpha = \frac{-1}{2} \text{ and } \beta = \frac{1}{2}$

Note: In a vector space V any set of vectors containing the zero vector is L. D. If $\{v_1, v_2, \dots, v_n\}$ is a set and $v_1 = 0$ then $0v_1 + 0v_2 \dots + 0v_{i-1} + 1v_i + 0v_{i+1} + \dots + 0v_n$ is a nontrivial linear combination resulting in the zero vector.

Ex. In a vector space V, if v is a linear combination of v_1, v_2, \dots, v_n , i.e. $v \in [v_1, v_2, \dots, v_n]$ then prove that $\{v_1, v_2, \dots, v_n\}$ is L. D.

Solution:

Since $v \in [v_1, v_2, \dots, v_n]$ is given $\therefore v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$ $\forall \alpha_i \in R \ i = 1,2,3 \dots n$ i.e. $1.v - \alpha v_1 - \alpha v_2 \dots - 2nv_n = 0$ Since $1 \neq 0$ $\therefore \{v_1, v_2, \dots, v_n\}$ is L. D. Example:-In a vector space V, if the set $\{v_1, v_2, \dots, v_n\}$ L. I. and $v \aleph \in [v_1, v_2, \dots, v_n]$ then prove $\{v_1, v_2, \dots, v_n\}$ is L. I.

Solution: Let us suppose that $v \in [v_1, v_2, \dots, v_n]$ $\therefore \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$

 $\forall \alpha_i \in R, \quad i = 1, 2, 3, \dots, n$ $\therefore 1. v - \alpha_1 v_1 - \alpha_2 v_2 \dots - \alpha_n v_n = 0$ Since $1 \neq 0$ $\therefore \{v_1, v_2, \dots, v_n\}$ is L. D.

Theorem:- (a) If a set is LI, then any subset of it is also LI and (b) If a set is LD, then any superset of it is also LD.

Theorem:-In a vector space V. Suppose { $v_1, v_2, v_3, \dots, v_n$ } is an ordered set of vectors with $v_1 \neq 0$. The set is LD iff one of the vectors v_2, v_3, \dots, v_n , say v_k , belongs to the span of $v_1, v_2, v_3, \dots, v_{k-1}$ i.e. $v_k \in [v_1, v_2, v_3, \dots, v_{k-1}]$ for some $k = 1,2,3,\dots,n$. **Proof:**- Suppose $v_k \in [v_1, v_2, v_3, \dots, v_{k-1}]$ i.e. v_k is a linear combination of $v_1, v_2, v_3, \dots, v_{k-1}$. \therefore the set { $v_1, v_2, v_3, \dots, v_{k-1}, v_k$ } is LD. Since { $v_1, v_2, v_3, \dots, v_{n-1}$, v_k } is superset of the set { $v_1, v_2, v_3, \dots, v_{k-1}, v_k$ } \therefore { $v_1, v_2, v_3, \dots, v_{k-1}, v_k$ } is superset of { $v_1, v_2, v_3, \dots, v_n$ } \therefore { $v_1, v_2, v_3, \dots, v_n$ } is LD. Conversely, Let us suppose that { $v_1, v_2, v_3, \dots, v_n$ } is LD. Now consider the set $S_1 = \{v_l\}$

 $S_2 = \{v_1, v_2\}$ $S_3 = \{v_1, v_2, v_3\}$ $\mathbf{S}_{i} = \{ v_{1}, v_{2}, v_{3}, \dots, v_{i} \}$ $S_n = \{ v_1, v_2, v_3, \dots, v_n \}$ Here $S_1 = \{v_1\}$ is LI because $v_1 \neq 0$ But $S_n = \{ v_1, v_2, v_3, ..., v_n \}$ is LD is given. So we go down the list and choose the first linearly dependent set. Let S_k be first linearly dependent set. i.e. S_k is linearly dependent set (LD) and S_{k-1} is linearly independent set(LI). Here $2 \le k \le n$ Since S_k is LD $\therefore \alpha_i \in R, i = 1, 2, 3, ..., k$ with at least one of $\alpha_i \neq 0$ such that $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_k v_k = 0$ -----(1) Let $\alpha_{\iota} \neq 0$ If $\alpha_k = 0$ then S_{k-1} would become a linearly dependent. But S_{k-1} is LI. $\therefore \alpha_k = 0$ is not possible. $\therefore \alpha_k \neq 0.$ From equation (1) we get $v_k = -\frac{\alpha_1}{\alpha_k} v_1 + -\frac{\alpha_2}{\alpha_k} v_2 + -\frac{\alpha_3}{\alpha_k} v_3 + \dots + -\frac{\alpha_{k-1}}{\alpha_k} v_{k-1}$ v_k is linear combination of { $v_1, v_2, v_3, \dots, v_{k-1}$ } i.e. $v_k \in [v_1, v_2, v_3, \dots, v_{k-1}]$

Corollary:- A finite subset $S = \{ v_1, v_2, v_3, ..., v_n \}$ of a vector space V containing a nonzero vector has a linearly independent subset A such that [A] = [S]

Proof: Assume that $v_1 \neq 0$

If S is LI then there is nothing to prove as we have A =S. and If S is not LI then we have a vector v_k such that $v_k \in [v_1, v_2, v_3, ..., v_{k-1}]$ Now discard v_k then the remaining set $S_1 = \{v_1, v_2, v_{k-1}, v_{k+1}, ..., v_n\}$ has the same span as that of S. If S_1 is LI then there is nothing to prove that and we have $S_1 = S$.

And

If S_1 is not LI then repeat the foregoing process.

Then finally we get a linearly independent subset A such that [A] = [S]

Example:- Show that the ordered set $\{(1, 1, 0), (0, 1, 1), (1, 0, -1), (1, 1, 1)\}$ is L.D. and locate one of the vectors that belongs to the span of the previous ones. Also find the largest linearly independent subset whose span in $[S_4]$.

Solution:- Let us consider the sets

 $S_1 = \{ (1, 1, 0) \}$ $S_2 = \{ (1, 1, 0) \}, (0, 1, 1) \}$ $S_3 = \{ (1, 1, 0), (0, 1, 1), (1, 0, -1) \}$ $S_4 = \{(1, 1, 0), (0, 1, 1), (1, 0, -1), \}$ (1, 1, 1)Here $S_1 = \{ (1, 1, 0) \}$ is LI $[\because (1, 1, 0) \neq (0, 0, 0)]$ Now $S_2 = \{(1, 1, 0), (0, 1, 1)\}$ is also LI because neither of the two vectors in S_2 is a scalar multiple of the other. i.e. $(1, 1, 0) \neq \alpha$ (0, 1, 1) or $(0, 1, 1) \neq \alpha$ (1, 1, 0){(or) for $\alpha, \beta \in \mathbb{R}$ such that α (1, 1,0) + β (0, 1, 1) = (0, 0, 0) thus we get $\alpha = \beta = 0$ there for S₂ = {(1, 1,0)), (0, 1, 1)} is also LI } Now $S_3 = \{(1, 1, 0), (0, 1, 1), (1, 0, -1)\}$ is LD because for α , β , $\gamma \in \mathbb{R}$ such that α (1, 1,0))+ β (0, 1, 1)+ γ (1, 0, -1) = (0, 0, 0) $\therefore \alpha + \gamma = 0, \ \alpha + \beta = 0, \ \beta - \gamma = 0$ From these equations we get $\alpha = -\gamma$, $\beta = \gamma$, $\gamma = \gamma$ Thus if we take $\gamma = 1$ then we get $\alpha = -1$, $\beta = 1$, $\gamma = 1$ $\therefore \alpha = \beta = \gamma \neq 0$ \therefore S₃ = {(1, 1,0), (0, 1, 1), (1, 0, -1)} is LD Hence $(1, 0, -1) \in [\{(1, 1, 0), (0, 1, 1)\}]$ Now $S_4 = \{(1, 1, 0), (0, 1, 1), (1, 0, -1), (1, 1, 1)\}$ is LD Because $S_3 \subset S_4$ i.e. S_4 is super set of S_3 . Since $(1, 0, -1) \in [\{(1, 1, 0), (0, 1, 1)\}]$ \therefore (1, 0, -1) \in [{(1, 1, 0), (0, 1, 1), (1, 1, 1)] Now discard (1, 0, -1) from the set S₄ then the span of the remaining set $A = \{(1, 1, 0), (0, 1, 1), (1, 1, 1)\}$ is the same as $[S_4]$. Let us check for the linear independent of A Let $\alpha, \beta, \gamma \in \mathbb{R}$ such that α (1, 1,0))+ β (0, 1, 1)+ γ (1, 1, 1) = (0, 0, 0) $\therefore \alpha + \gamma = 0, \ \alpha + \beta + \gamma = 0, \ \beta + \gamma = 0$ From these equations we get $\therefore \alpha = \beta = \gamma = 0$ Set A = {(1, 1, 0), (0, 1, 1), (1, 1, 1)} is the largest linearly independent subset whose span in $[S_4]$. i.e. $[A] = [S_4]$

Note :- An infinite subset S of a vector space V is said to be linearly independent if every finite subset of S is LI. And an infinite subset S of a vector space V is said to be linearly dependent if it is not LI.

Example:- Prove that the subset $S = \{1, x, x^2, x^3, ...\}$ of i \mathcal{P} is LI Solution:- Let $S_1 = \{1, x, x^2, x^3, ..., x^n\}$ $a_1, a_2, a_3, ..., a_n \in \mathbb{R}$ such that $a_11 + a_2 x + a_3 x^2 + ... + a_n x^n = 0$ i.e. $a_11 + a_2 x + a_3 x^2 + ... + a_n x^n = 01 + 0 x + 0 x^2 + ... + 0 x^n$ Comparing the coefficient then we get $a_1 = a_2 = a_3 = ... = a_n = 0$ \therefore S_1 is finite and LI. Since S is infinite set but $S_1 \subset S$ and S_1 is LI \therefore S is LI.

Dimension and Basis

Definition: Basis:-

A subspace B of a vector space V is said to be a basis for V if

- (a) B is linearly independent and
- (b) [B]=V i.e. B generates V.

```
Example:- Prove that the set B = \{i, j, k\} is basis for V_3 where i=(1,0,0), j=(0,1,0) and
                 k = (0, 0, 1).
         (a) Check set B for LI.
               \alpha(1,0,0) + \beta(0,1,0) + \gamma(0,0,1) = 0
              \therefore \alpha = 0, \beta = 0, \gamma = 0
              \therefore set B is LI.
         (b) Let us check for set B as [B]=V
             Let (x, y, z) \in V_3 and (\alpha, \beta, \gamma) \in \mathbb{R} such that
              \alpha (1,0,0) + \beta (0,1,0) + \gamma (0,0,1) = (x,y,z)
              \therefore \alpha = x, \beta = y, \gamma = z
              \therefore x(1,0,0) + y(0,1,0) + z(0,0,1) = (x, y, z)
                 Which is the required linear combination of set B.
              \therefore [B] =V<sub>3</sub>.
              \therefore Set B is Basis for V<sub>3</sub>.
Example: Prove that the set B = \{(1,1,0), (1,0,1), (0,1,1)\} is basis for V_3.
```

(a) Let $\alpha, \beta, \gamma \in R$ such that $\alpha(1,1,0) + \beta(1,0,1) + \gamma(0,1,1) = (0,0,0)$ $\therefore \alpha + \beta = 0, \ \beta + \gamma = 0, \ \gamma + \alpha = 0$ $\therefore \alpha = 0, \beta = 0, \gamma = 0$ ∴ set B is LI. -----(1) (b) Now Let $(x, y, z) \in V_3$ and $(\alpha, \beta, \gamma) \in \mathbb{R}$ such that $\alpha(1,1,0) + \beta(1,0,1) + \gamma(0,1,1) = (x,y,z)$ $\therefore \alpha + \beta = x, \ \beta + \gamma = z, \ \gamma + \alpha = y$ $\therefore \alpha = \frac{x+y-z}{2}, \ \beta = \frac{x-y+z}{2}, \ \gamma = \frac{z-x+y}{2}$ $\frac{x+y-z}{2}(1,1,0) + \frac{x-y+z}{2}(1,0,1) + \frac{z-x+y}{2}(0,1,1) = (x,y,z)$ Which is linear combination of vector of set B. i.e. B generates V_3 . \therefore [B] = V₃. -----(2) From (1) and (2)the set B = {(1,1,0), (1,0,1), (0,1,1)} is basis for V₃.

Note: The above example shows that a basis for a vector V need not be unique.

Theorem: In a vector space V if $\{v_1, v_2, v_3, \dots, v_n\}$ generates V and if

 $\{w_1, w_2, w_3, \dots, w_n\}$ is LI then prove that $m \le n$.

OR We cannot have more linearly independent vectors than the number of elements in a set of generators.

```
Proof:- Since \{v_1, v_2, v_3, \dots, v_n\} generates V.
```

i.e. $V = [v_1, v_2, v_3, ..., v_n]$

Let $W_1 \in V$

: $W_1 \in [v_1, v_2, v_3, ..., v_n]$

 \therefore The new set { $w_1, v_1, v_2, v_3, \dots, v_n$ } will be LD

(:: one of vector is a linear combination of other one)

Since the set is LD

 \therefore there exists a vector which is the linear combination of the preceding vectors. Such vector must be from $v_i{\,}^{\prime}s.$

Let such a vector be v_i .

We discard this vector due to which the set becomes LD.

Remaining vectors will have same span.

i.e. $\mathbf{V} = [\mathbf{w}_{1}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \dots, \mathbf{v}_{j-1}, \mathbf{v}_{j+1}, \dots, \mathbf{v}_{n}]$

Again an element $w_2 \in V$ must be the linear combination of vectors in this span.

 $\therefore W_2 \in [W_{1,}V_1, V_2, V_3, \dots, V_{j-1}, V_{j+1, \dots, V_n}]$

Add the vector w_2 and consider the set { w_2 , w_1 , v_1 , v_2 , v_3 , ..., v_{j-1} , $v_{j+1, ..., v_n}$ } Again this set is Ld

Again remove the vector which belongs to the span of preceding vectors.

Such vector must be from v_i's.

Let such a vector be v_k .

We discard this vector due to which the set becomes LD.

Then we get following set

 $\{w_2, w_1, v_1, v_2, v_3, \dots, v_{k-1}, v_{k+1}, \dots, v_{j-1}, v_{j+1, \dots, v_n}\}$

This is LI and which generates vector span V.

We continue the process of adding the vectors from w_i set and removing the vector from v_i set.

At the time of addition of the vector from w_i set the set becomes LD and at the time of removal of vector from v_i set the set becomes LI.

We have to prove that $m \le n$.

Let us suppose that m > n.

Then the vectors from v_i set will be exhausted first, After consuming all vectors in set when we add the vector from w_i set we will get LD set of vectors from w_i set only.

This is impossible.

Since $\{w_i\}_{i=m}$ I LI and hence its every subset is LI.

 \therefore our supposition is wrong.

Hence $m \le n$ is true.

Corollary:- If V has a basis of n elements, then every set of p vectors with p>n is LD. **Proof:-** Let B = { $v_1, v_2, v_3, ..., v_n$ } the basis for V and A = { $u_1, u_2, u_3, ..., u_n$ } be set of vectors in V with p>nWe have to prove that A is LD. Assume that A is not LD. i.e. A is LI

So A is the set of LI vectors in V and B is the set of LI generators in V. $\therefore p \le n$.

Which contradicts the hypothesis p>n.

- \therefore our supposition is wrong.
- \therefore A must be LD.
- **Corollary:-** If V has a basis of n elements, then every other basis for V also has n elements.

Proof:- Let $B_1 = \{ v_1, v_2, v_3, ..., v_n \}$ and $B_2 = \{ w_1, w_2, w_3, ..., w_n \}$ are two bases for V. then B_1 and B_2 are LI and $[B_1] = V$ and $[B_2] = V$

We have to prove that m = n

Since $[B_1] = V$ and B_2 are LI

i.e. B_1 is the set of LI generators of V and B_2 is the set of LI vector in V.

∴ m≤n.----(1)

Since $[B_2] = V$ and B_1 are LI

i.e. B_2 is the set of LI generators of V and B_1 is the set of LI vector in V.

∴ n≤m.----(2)

From (1) and (2)

m= n

: Every basis of V contains vector.

i.e. Numbers of elements in a basis for vector space V is always constant.

Definition:- Dimension of a vector space:-

If a vector space V has a basis consisting of a finite number of elements in a basis is called the dimension of the space. The vector space V is called finite dimensional and is written as dimV.

Note:-

- If dimV = n then V is said to be n-dimensional.
- If V is not finite dimensional then it is called infinite dimensional.
- If $V = V0 = \{0\}$ its dimension is taken to be zero.
- If a vector space V is n –dimensional then there exist n linearly independent vectors in V.
- If a vector space V is n –dimensional then every set of n+1 vectors in V is linearly dependent (LD) vectors in V.

Example:- Prove that V_2 is 2-dimensional space and V_3 is 3-dimensional space.

Solution:- Here $e_1 = (1,0)$ and $e_2 = (0,1)$ in V_2 and $e_1 = (1,0,0)$, $e_2 = (0,1,0)$ and $e_2 = (0,0,1)$ in V_3 . Since $\{e_1, e_2\}$ is basis for V_2 and $\{e_1, e_2, e_3\}$ is basis for V_3 . $\therefore \dim V_2 = 2$ and $\dim V_3 = 3$

Example:- Prove that $s = \{e_1, e_{2,...,}e_n\}$ be a standard basis for V_n and find the dimension for $V_n.(or) R^n$.

Solution: Let $\alpha_i \in R$, $1 \le i \le n$ such that

 $\alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n = (0, 0, 0, \dots, 0)$

$$\therefore \alpha_{1}(1, 0, 0, ..., 0) + \alpha_{2}(0, 1, 0, ..., 0) + ... + \alpha_{n}(0, 0, 0, ..., 1) = (0, 0, 0, ..., 0)$$

$$\therefore (\alpha_{1}, \alpha_{2}, ..., \alpha_{n}) = (0, 0, 0, ..., 0)$$

$$\therefore \alpha_{1} = \alpha_{2} = = \alpha_{n} = 0$$

$$\therefore \text{The set } s = \{e_{1}, e_{2,...,} e_{n}\} \text{ is LI. } (1)$$
Now let $(x_{1}, x_{2}, x_{3},, x_{n}) \in V_{n}$ such that
$$\alpha_{1}e_{1} + \alpha_{2}e_{2} + ... + \alpha_{n}e_{n} = (x_{1}, x_{2}, x_{3},, x_{n})$$

$$\therefore \alpha_{1}(1, 0, 0, ..., 0) + \alpha_{2}(0, 1, 0, ..., 0) + ... + \alpha_{n}(0, 0, 0, ..., 1) = (x_{1}, x_{2}, x_{3},, x_{n})$$

$$\therefore (\alpha_{1}, \alpha_{2}, ..., \alpha_{n}) = (x_{1}, x_{2}, x_{3},, x_{n})$$

$$\therefore \alpha_{1}e_{1} + \alpha_{2}e_{2} + ... + \alpha_{n}e_{n} = (x_{1}, x_{2}, x_{3},, x_{n})$$

$$\therefore \alpha_{1}e_{1} + \alpha_{2}e_{2} + ... + \alpha_{n}e_{n} = (x_{1}, x_{2}, x_{3},, x_{n})$$
i.e. [S] = V (2)
From (1) and (2)
s = {e_{1}, e_{2,...,e_{n}}} be a standard basis for V_{n.}
$$\therefore \dim V_{n} = n.$$

12

Example :- Find the dimension of the space p_n .

Solution:- Every polynomial in p_n is a linear combination of the function $\{1, x, x^2, x^3, ..., x^n\}$ Let $a_1, a_2, a_3, ..., a_n \in \mathbb{R}$ such that $a_1 1 + a_2 x + a_3 x^2 + ... + a_n x^n = 0$ i.e. $a_1 1 + a_2 x + a_3 x^2 + ... + a_n x^n = 01 + 0 x + 0 x^2 + ... + 0 x^n$ Comparing the coefficient, then we get $a_1 = a_2 = a_3 = ... = a_n = 0$ $\therefore \{1, x, x^2, x^3, ..., x^n\}$ is LI. $\therefore \{1, x, x^2, x^3, ..., x^n\}$ is basis for p_n . $\therefore \dim p_n = n+1$.

Theorem:-In an n-dimensional vector space V, any set of n linearly independent vector is a basis. OR. Prove that any set of n linearly independent vector is a basis In an n-dimensional vector space V.

Proof:-Suppose $B = \{ v_1, v_2, v_3, \dots, v_n \}$ is a set of n linearly independent vectors. We want to prove that B is basis.

For this,

• •

Since B is set of n linearly independent vectors is given.

 \therefore we have to only prove that [B]= V.

Let $v \in V$

Now consider the set $B_1 = \{v_1, v_2, v_3, ..., v_n, v\}$.

 \therefore B₁ is a set containing n +1 vectors in dimensional vector space V.

 \therefore B₁ is LD.

 \therefore there exists a vector in this set which belongs to the span of preceding vectors.

But such vectors cannot be v_i , i =1,2,3,...,n because { v_i , i=1 is LI. So any vector $v \in V$ can be expressed as a linear combination of B.

$$\therefore v \in [v_1, v_2, v_3, ..., v_n]$$

 \therefore [B] is basis of V.

Example: Prove that the set {(1,1,1), (1,-1,1), (0,1,1)} is a basis for V₃. **Solution:** Let $\alpha, \beta, \gamma \in R$ such that

$$\alpha(1,1,1) + \beta(1,-1,1) + \gamma(0,1,1) = 0$$

$$\therefore \alpha + \beta, \alpha - \beta + \gamma, \alpha + \beta + \gamma) = (0,0,0)$$

$$\therefore \alpha + \beta = 0,$$

$$\alpha - \beta = 0$$

$$\alpha = \beta = \gamma = 0$$

$$\therefore \{(1,1,1), (1,-1,1), (0,1,1)\} \text{ is LI------(1)}$$

Now $\forall (x, y, z) \in V_3$ such that

$$\alpha(1,1,1) + \beta(1,-1,1) + \gamma(0,1,1) = (x, y, z)$$

$$\therefore \alpha + \beta = x,$$

$$\alpha - \beta + \gamma = y,$$

$$\alpha - \beta + \gamma = y,$$

$$\alpha + \beta + \gamma = z,$$

$$\gamma = z - x,$$

$$\therefore \alpha = \frac{x - 2y - z}{2}, \ \beta = \frac{z - x}{2}, \ \gamma = z - x,$$

$$\therefore \frac{x - 2y - z}{2} (1,1,1) + \frac{z - x}{2} (1,-1,1) + z - x(0,1,1) = (x, y, z)$$

Which is linear combination of vector $\{(1,1,1), (1,-1,1), (0,1,1)\}$

Which is linear combination of vector {(1,1,1), (1,-1,1), (0,1,1) $\therefore V_3 = [(1,1,1), (1,-1,1), (0,1,1)]$ ------(2) From (1)and (2) given set is basis for V_{3.}

Theorem: In a vector space V. Let $B = \{v_1, v_2, v_3, ..., v_n\}$ span V. Then the following two conditions are equivalent.

(a) { v_1 , v_2 , v_3 , ..., v_n } is a linearly independent set.

(b) If $v \in V$ then the expression $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n$ is unique.

Proof:- Let us assume that $\{v_1, v_2, v_3, ..., v_n\}$ is a linearly independent set. Now we want to prove that for $v \in V$, then the expression $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_1$

 $_{3}+\ldots+\alpha_{n}v_{n}$ is unique.

For this, Let $v = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 + \dots + \beta_n v_n$ be another expression of $v \in V$. $\therefore \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 + \dots + \beta_n v_n$ $\therefore (\alpha_1 - \beta_1) v_1 + (\alpha_2 - \beta_2) v_2 + (\alpha_3 - \beta_3) v_3 + \dots + (\alpha_n - \beta_n) v_n = 0$ But { $v_1, v_2, v_3, \dots, v_n$ } is a linearly independent set. $\therefore (\alpha_1 - \beta_1) = (\alpha_2 - \beta_2) = (\alpha_3 - \beta_3) = \dots = (\alpha_n - \beta_n) = 0$ $\therefore \alpha_1 = \beta_1, \alpha_2 = \beta_2, \alpha_3 = \beta_3, \dots, \alpha_n = \beta_n$

Hence the expression $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n$ is unique. Conversely,

Let us assume that $v \in V$ then the expression $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n$ is unique.

We want to prove that { v_1 , v_2 , v_3 , ..., v_n } is a linearly independent set. Let us suppose that { v_1 , v_2 , v_3 , ..., v_n } is not a linearly independent set. Then there exists scalars α_1 , α_2 , α_3 , ..., α_n (not all zero) with at least one non zero scalar satisfying

 $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n = 0$ -----(1)

Also $0v_1 + 0v_2 + 0v_3 + \dots + 0v_n = 0$ -----(2)

 \therefore (1) and (2) are two different linear combination for the vector $0 \in V$.

This contradicts to our assumption.

 \therefore our supposition is wrong.

 \therefore { v_1 , v_2 , v_3 , ..., v_n } is a linearly independent set.

Note:- From above theorem we get that a set B is a basis for a vector space V iff [B] = V. and the expression for $v \in V$ in terms of elements of B is unique.

Definition:- Coordinate vector:-

Let B={ $v_1, v_2, v_3, ..., v_n$ } be an ordered basis for V. Then a vector $v \in V$ can be written as $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + ... + \alpha_n v_n$. The vector ($\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$) is called the coordinate vector of V relative to the ordered basis B.

- It is denoted by $[V]_B$.
- α₁, α₂, α₃, ..., α_n are called the coordinates of V relative to the ordered basis B.
- the coordinate vector of V relative to are simply called the the coordinate vector.

Example:- Find the coordinate vector of the vector (2, 3, 4, -1) of V₄ relative to the standard basis for V₄.

Solution:- Since $\{e_1, e_2, e_3, e_4\}$ is basis for V_4 .

Where $e_1 = (1,0,0,0)$, $e_2 = (0,1,0,0)$, $e_3 = (0,0,1,0)$ and $e_3 = (0,0,0,1)$ For a, b, c, $d \in \mathbb{R}$ such that $(2, 3, 4, -1) = ae_1 + b e_2 + ce_3 + de_4$ = a(1,0,0,0) + b (0,1,0,0) + c(0,0,1,0) + d(0,0,0,1)(2, 3, 4, -1) = (a, b, c, d)

∴ a = 2, b = 3, c = 4, d = -1∴ $(2, 3, 4, -1) = 2e_1 + 3 e_2 + 4e_3 + -1e_4$ ∴ The coordinate vector of the vector (2, 3, 4, -1) of V₄ relative to the standard basis for V₄ is (2, 3, 4, -1) ∴ $(2, 3, 4, -1) = [(2, 3, 4, -1)]_B.$

Example:- Find the coordinate vector of the vector (2, 3, 4, -1) of V₄ relative to the ordered basis B = {(1,1,0, 0), (0, 1,1,0), (0, 0,1,1), (1,0,0,0)} for V₄.

Solution:- Let $\alpha, \beta, \gamma, \delta \in R$ such that

$$(2, 3, 4, -1) = \alpha (1,1,0, 0) + \beta (0, 1,1,0) + \gamma (0, 0,1,1) + \delta (1,0,0,0)$$

$$\therefore (2, 3, 4, -1) = (\alpha + \delta, \alpha + \beta, \beta + \gamma, \gamma)$$

$$\therefore \alpha + \delta = 2, \ \alpha + \beta = 3, \beta + \gamma = 4, \ \gamma = -1$$

Solving above equation we get

$$\therefore \alpha = -2, \ \beta = 5, \ \gamma = -1, \delta = 4$$

Hence the coordinates of (2, 3, 4, -1) relative to the ordered basis B are -2,5,-1

and 4.

$$\therefore$$
 (-2,5,-1, 4) = [(2, 3, 4, -1)]_B.

Theorem:- Let the set { v_1 , v_2 , v_3 , ..., v_k } be a set of linearly independent subset of an n-dimensional vector space V. Then we can find vectors v_{k+1} , v_{k+2} , ..., v_n in V such that the set { v_1 , v_2 , v_3 , ..., V_k , v_{k+1} , ..., v_n } is a basis for V.

OR

any set of linearly independent vectors of vector space can be extended to the basis or starting from any LI set of vectors in a vector space we can construct basis for it.

Proof:- Here V is n-dimensional vector space.

 \therefore it has n LI generators.

But number of LI vectors of V must be less than the number of LI generators of V.

∴k≤n.

If k = n then the set { v_1 , v_2 , v_3 , ..., v_n } will be a set of n LI vectors in an ndimensional vector space V.

If k< n then the set { v_1 , v_2 , v_3 , ..., v_k } is not basis of V, because any basis of V should contain n elements.

i.e. $[v_1, v_2, v_3, ..., v_k] \neq V$

i.e. $[v_1, v_2, v_3, ..., v_k] \subset V$.

Hence there exists at least one vector v_{k+1} of V which does not belongs to the span of { $v_1, v_2, v_3, ..., v_k$ }

i.e. $v_{k+1} \notin [v_1, v_2, v_3, ..., v_k]$

we enlarge our set by adding v_{k+1} to our set thus obtaining $\{v_1, v_2, v_3, \dots, V_k, v_{k+1}\}$.

Obviously this set of k+1 vectors is LI.

If k+1 = n then this set is basis for V.

If k+1 < n again we can find a vector of v_{k+2} outside the span of { v_1 , v_2 , v_3 , V_k , v_{k+1} }.

We repeat this process till we get $\{v_1, v_2, v_3, \dots, V_k, v_{k+1, \dots}, v_n\}$ a basis of V.

Example:- Given two linearly independent vectors (1, 0, 1, 0) and (0, -1, 1, 0) of V₄. Find a basis for V₄ that includes these two vectors.

Solution:- Since $[(1, 0, 1, 0), (0, -1, 1, 0)] = \{ \alpha, -\beta, \alpha + \beta, 0/\alpha, \beta \text{ any scalars} \}.$ Since the fourth coordinate is always zero for vectors in this span.

 \therefore (0, 0, 0, 1) is not in this span.

Thus we get an enlarged linearly independent set

 $\{(1, 0, 1, 0), (0, -1, 1, 0), (0, 0, 0, 1)\}$

And whose span is

[(1, 0, 1, 0), (0, -1, 1, 0), (0, 0, 0, 1)]= { $\alpha, -\beta, \alpha + \beta, \gamma/\alpha, \beta, \gamma$ any scalars}. Now we have to identify one element outside this span.

Since the third coordinate in the elements of this span is always $\alpha + \beta$. So we can find a vector for which this is not true. Let us check set B is basis .

Let $\alpha, \beta, \gamma, \delta \in R$ such that $\alpha (1, 0, 1, 0) + \beta (0, -1, 1, 0) + \gamma (0, 0, 0, 1) + \delta (1, -2, 0, 0) = (0, 0, 0, 0)$ $\therefore (\alpha + \delta, -\beta - 2\delta, \alpha + \beta, \gamma) = (0, 0, 0, 0)$ $\therefore \alpha + \delta = 0, -\beta - 2\delta = 0, \alpha + \beta = 0, \gamma = 0$ Solving above equation we get thus $\alpha = \beta = \gamma = \delta = 0$ i.e. the set of vectors {(1, 0, 1), (1, 1, 0), (1, -1, 1), (1, 2, -3)}is L.I.

: set B = {(1, 0, 1, 0), (0, -1, 1, 0), (0, 0, 0, 1), (1, -2, 0, 0)} is LI and a basis for V₄.

Example:- Let $\{(1, 1, 1, 1), (1, 2, 1, 2)\}$ be a linearly independent subset of vector space V₄. Extend it to the basis for V₄.

Solution:- We have

 $[(1, 1, 1, 1), (1, 2, 1, 2)] = \{ \alpha + \beta, \alpha + 2\beta, \alpha + \beta, \alpha + 2\beta/\alpha, \beta \text{ any scalars} \}.$ Since the first and third coordinates are equal for all vectors in the span. $\therefore (0, 3, 2, 3) \text{ is not in the span.}$ Thus we have enlarged linearly independent set $\{(1, 1, 1, 1), (1, 2, 1, 2), (0, 3, 2, 3)\}$ And whose span is $[(1, 1, 1, 1), (1, 2, 1, 2), (0, 3, 2, 3)] = \{ \alpha + \beta, \alpha + 2\beta + 3\gamma, \alpha + \beta + 2\gamma, \alpha + 2\beta + 3\gamma/\alpha, \beta, \gamma \text{ any scalars} \}.$

Obviously the vector (2, 6, 4, 5) is not in this span. Hence the set $\{(1, 1, 1, 1), (1, 2, 1, 2), (0, 3, 2, 3), (2, 6, 4, 5)\}$ is LI and a basis for V₄.

- **Theorem:-** Let U be a subspace of a finite-dimensional vector space V.Then prove that dim U \leq dim V. Equality holds only when U = V.
- **Proof:-** Let $B = \{ v_1, v_2, v_3, ..., v_n \}$ be basis for V. This generates V and has n elements.

i.e. there can be at most n linearly independent vectors in V and therefore in U.

 \therefore Any set of linearly independent vectors in U cannot more than n vectors.

 $\therefore \dim U \leq \dim V$

Let $\dim U = \dim V$

Let B_1 = basis of U.

 \therefore is B₁ LI and span U.

 \therefore B₁ contains n LI vectors in U.

But any set of n LI vectors in V is basis for V $(\because \dim V=n)$.

 \therefore B₁ is basis of V.

Theorem:- (Dimension theorem)If U and W are two subspaces of a finite dimensional vector space V, then prove that $\dim(U + W) = \dim U + \dim W - \dim U \cap W$.

Proof:-Let dim U = m, dim W = p ,dim U \cap W = r and dim V= n.

Since U, W and U \cap W are subspaces of a vector space V.

Since dimension of a subspace of a vector space cannot exceed that of a vector

ector

space. $\therefore m \le n$, $p \le n$, r≤n Let { $v_1, v_2, v_3, \dots, v_r$ } be basis for U \cap W. Since vectors in basis is LI. \therefore { v_1 , v_2 , v_3 , ..., v_r } is LI in U \cap W Hence $\{v_1, v_2, v_3, \dots, v_r\}$ is LI in U and W both. In particular { v_1 , v_2 , v_3 , ..., v_r } are LI vectors in U. So that can set can be extended to the basis of U. Thus we can find the vector u_{r+1} , u_{r+2} , ..., u_m in U such that $\{v_1, v_2, v_3, \dots, v_r, u_{r+1}, u_{r+2}, \dots, u_m\}$ is a basis for U Similarly, the set { v_1 , v_2 , v_3 , ..., v_r } are LI vectors in W. So that can set can be extended to the basis of W. Thus we can find the vector $w_{r+1}, w_{r+2}, \dots, w_p$ in W such that $\{v_1, v_2, v_3, \dots, v_r, w_{r+l}, w_{r+2}, \dots, w_p\}$ is a basis for W. Now let us consider the set $A = \{ v_1, v_2, v_3, \dots, v_r, u_{r+1}, u_{r+2}, \dots, u_m, w_{r+1}, w_{r+2}, \dots, w_p \}$ We shall show that A is basis for U + W. A will be basis for U + W if (i) A is LI. (ii) [A] = U + W

Let *x* be any vector in U + W. Then x = u + w where $u \in U$ and $w \in W$. But $u \in U$ is a linear combination of vectors { $v_1, v_2, v_3, ..., v_r, u_{r+1}, u_{r+2}, ..., u_m$ } Similarly, $w \in W$ is a linear combination of vectors { $v_1, v_2, v_3, ..., v_r, w_{r+1}, w_{r+2}, ..., w_p$ } \dots, w_p } $\therefore x = u + w$ becomes linear combination of A. Hence [A] = U + W

To prove linear independence of A
Let
$$\alpha_i, \beta_j, \gamma_k$$
 for $1 \le i \le r$, $r+1 \le j \le m$, $1+r \le k \le p$ are scalars such that

$$\sum_{i=1}^r \alpha_i v_i + \sum_{i=r+1}^m \beta_i u_i + \sum_{i=r+1}^p \gamma_i w_i = 0$$
i.e $\sum_{i=1}^r \alpha_i v_i + \sum_{i=r+1}^m \beta_i u_i = -\sum_{i=r+1}^p \gamma_i w_i = v$ say ------(1)
Since vectors { $v_1, v_2, v_3, ..., v_r, u_{r+1}, u_{r+2}, ..., u_m$ } in U and
vector $w_{r+1}, w_{r+2}, ..., w_p$ in W.
vector v belongs both U and W.
i.e. $v \in U \cap W$.
 $\therefore v$ can be expressed as a linear combination of basis of basis of U $\cap W$.
 $\therefore v = \sum_{i=1}^r \delta_i v_i$ -------(2)
From (1) and (2) we get
 $\sum_{i=r+1}^p \gamma_i w_i + \sum_{i=1}^r \delta_i v_i = 0$ -------(3)

Since $\{v_1, v_2, v_3, ..., v_r, w_{r+1}, w_{r+2}, ..., w_p\}$ is LI. Each γ_i and δ_i are zero. In particular each γ_i i= r+1,,p is zero. Using this with equation (1) we get $\sum_{i=1}^r \alpha_i v_i + \sum_{i=r+1}^m \beta_i u_i = 0$ But $\{v_1, v_2, v_3, ..., v_r, u_{r+1}, u_{r+2}, ..., u_m\}$ be basis in U therefore it is LI. Each $\alpha_i = 0$ for i= 1,2,...,r and $\beta_i = 0$ for i= r+1,...., m Thus we get the value of each scalars is zero. \therefore the set A is LI. \therefore set A is basis for U + W.

Hence $\dim(U + W) = m + p - r$ = dim U + dim W - dim U \cap W.

i.e. $\dim(U + W) = \dim U + \dim W - \dim U \cap W$.