Unit -4Matrices -2

> Definition: The eigen values and eigen vectors of a square matrix:

Let $A = [a_{ij}]_n$ be a square matrix of order n and λ a scalar (real or complex). If there exists a matrix X, satisfying $A X = \lambda X$, then λ is called an eigen value of A and X is called an eigen vector of A corresponding to λ . (Here X is an n × 1 Matrix)

i.e. Let A =
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 and X =
$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 then

$$A X = \lambda X \Rightarrow A X - \lambda X = 0$$

$$\Rightarrow (A - \lambda I_{n}) X = 0 \qquad (1)$$

$$\Rightarrow \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\therefore \begin{bmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} - \lambda \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

In equation (1), $|A - \lambda I_n| = 0$ is called the characteristic equation of the matrix A.

Note: - If $[a_{ij}]_n$ be a square matrix of order n then the characteristic equation of the matrix A of degree n in λ . Its n roots give its eigen values of A. Putting these values of λ in equation (1) i.e. \Rightarrow (A – λ I_n) X = 0 we get the corresponding eigen vectors of A.

A square matrix of order n can at most have n eigen values.

Example: - If $[a_{ij}]_n$ be a square matrix of order n and corresponding eigen value of a matrix exists then prove that it is unique.

Prove: - Let $[a_{ij}]_2$ be a square matrix of order 2.

Let us suppose that λ_1 and λ_2 two eigen values of corresponding to the eigen vector X.

 \therefore A X - λ_1 X = 0 and A X - λ_2 X = 0

 \therefore A X = λ_1 X and A X = λ_2 X

Thus, we get, $\lambda_1 X = \lambda_2 X \Rightarrow \lambda_1 = \lambda_2$

i.e. this prove that eigen value of a matrix is unique.

Example: -Find the Eigen values for the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$.

Solution: -We know that for any given matrix $|A-\lambda I|=0$

$$[A-\lambda I] = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = 0$$

$$[A-\lambda I] = \begin{bmatrix} 1 - \lambda & -3 \\ 1 + \lambda \end{bmatrix} = (1-\lambda)(1+\lambda) + 6 = 0$$

$$\Rightarrow 1-\lambda^2 + 6 = 0 \quad \text{(Which is the characteristic equation of the given matrix.)}$$

$$\Rightarrow -\lambda^2 + 7 = 0 \Rightarrow \lambda^2 = 7$$

$$\therefore \lambda = \pm \sqrt{7}$$

 $\therefore \lambda = -\sqrt{7}$ or $\lambda = \sqrt{7}$ which are eigen values of given matrix A.

Example: -Find the Eigen values and eigen vectors for the matrix $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$.

Solution: -We know that for any given matrix

$$[A-\lambda I]X=0 \text{ and } |A-\lambda I|=0$$
$$[A-\lambda I]=\begin{bmatrix}1 & 4\\ 3 & 2\end{bmatrix}-\lambda\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}=\begin{bmatrix}1 & 4\\ 3 & 2\end{bmatrix}-\begin{bmatrix}\lambda & 0\\ 0 & \lambda\end{bmatrix}=0$$
$$[A-\lambda I]=\begin{bmatrix}1-\lambda & 4\\ 3 & 2-\lambda\end{bmatrix}=(1-\lambda)(2-\lambda)-12=0$$

 $\Rightarrow \lambda^2 - 3\lambda - 10 = 0$ (Which is the characteristic equation of the given matrix.)

$$\Rightarrow (\lambda - 5)(\lambda + 2) = 0$$

 $\therefore \lambda = 5$ or $\lambda = -2$ which are eigen values of given matrix A.

Now we will find the eigen vectors corresponding to the eigen values $\lambda=5$ or $\lambda=-2$

For $\lambda = 5$,

The equation for eigen vector as

[A-5I]X=0 $\Rightarrow \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} -4 & 4 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Thus, we get,

 $-4x_1 + 4x_2 = 0$ and $3x_1 - 3x_2 = 0$

From these two equations we get, $x_1 = x_2$

Hence, the eigen vector corresponding to $\lambda=5$ is $\begin{bmatrix} a \\ a \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \forall a \in R - \{0\}$

For
$$\lambda = -2$$
,

The equation for eigen vector as

[A-5I]X=0

$$\Rightarrow \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 3 & 4 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Thus, we get,

 $3x_1 + 4x_2 = 0$ and $3x_1 + 4x_2 = 0$

From these two equations we get, $x_1 = -\frac{4}{3}x_2$

Hence, the eigen vector corresponding to $\lambda = -2$ is $\begin{bmatrix} -\frac{4}{3} \\ a \end{bmatrix} = a \begin{bmatrix} -\frac{4}{3} \\ 1 \end{bmatrix} \quad \forall a \in R - \{0\}$

Example: -Find the Eigen values and eigen vectors for the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Solution: -We know that for any given matrix

 $[A-\lambda I]X=0 \text{ and } |A-\lambda I|=0$ $[A-\lambda I]=\begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix} -\lambda \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix} =\begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix} -\begin{bmatrix}\lambda & 0 & 0\\ 0 & \lambda & 0\\ 0 & 0 & \lambda\end{bmatrix} =0$ $[A-\lambda I]=\begin{bmatrix}1-\lambda & 0 & 0\\ 0 & 1-\lambda & 0\\ 0 & 0 & 1-\lambda\end{bmatrix} =0$

 \therefore (1- λ)³=0 (Which is the characteristic equation of the given matrix.)

 $\therefore \lambda = 1$ which is eigen values of given matrix A.

Now we will find the eigen vectors corresponding to the eigen values $\lambda=1$

For $\lambda = 1$,

The equation for eigen vector as

 $[A-I\lambda]X=0$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Thus, we get,

 $0x_1 + 0x_2 + 0x_3 = 0$

From these two equations we get, $x_1 = a$, $x_2 = b$ and $x_3 = c$, where a, b and c are any non zero real numbers.

Hence, the eigen vector corresponding to $\lambda=1$ is

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \forall a, b, c \in R - \{0\}$$

Note: - the eigen value of the identity matrix I_n is one (1).

Example: -Find the Eigen values and eigen vectors for the matrix $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

Solution: -We know that for any given matrix

$$[A-\lambda I]X=0 \text{ and } |A-\lambda I|=0$$

$$[A-\lambda I]=\begin{bmatrix} -1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 3 \end{bmatrix} -\lambda \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} =\begin{bmatrix} -1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 3 \end{bmatrix} -\begin{bmatrix} \lambda & 0 & 0\\ 0 & \lambda & 0\\ 0 & 0 & \lambda \end{bmatrix} =0$$

$$[A-\lambda I]=\begin{bmatrix} -1-\lambda & 0 & 0\\ 0 & 2-\lambda & 0\\ 0 & 0 & 3-\lambda \end{bmatrix} =0$$

: $(-1-\lambda)(2-\lambda)(3-\lambda) = 0$ (Which is the characteristic equation of the given matrix.)

 $\therefore \lambda = -1, 2, 3$ which is eigen values of given matrix A.

Now we will find the eigen vectors corresponding to the eigen values λ =-1,2,3 For λ =-1,

The equation for eigen vector as

 $[A-I\lambda]X=0$

$$\Rightarrow \begin{bmatrix} -1+1 & 0 & 0 \\ 0 & 2+1 & 0 \\ 0 & 0 & 3+1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \Rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Thus, we get,

$$0x_1 + 0x_2 + 0x_3 = 0$$
, $0x_1 + 3x_2 + 0x_3 = 0$ and $0x_1 + 0x_2 + 4x_3 = 0$

From these two equations we get, $x_1 = a$, $x_2 = 0$ and $x_3 = 0$, where a is any non-zero real numbers.

Hence, the eigen vector corresponding to λ =-1 is

$$\begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \forall a, \in R - \{0\}$$

For $\lambda = 2$,

The equation for eigen vector as

 $[A-I\lambda]X=0$ $\Rightarrow \begin{bmatrix} -1-2 & 0 & 0 \\ 0 & 2-2 & 0 \\ 0 & 0 & 3-2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} -3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Thus, we get,

$$-3x_1 + 0x_2 + 0x_3 = 0$$
, $0x_1 + 0x_2 + 0x_3 = 0$ and $0x_1 + 0x_2 + 1x_3 = 0$

From these two equations we get, $x_1 = 0$, $x_2 = a$ and $x_3 = 0$, where a is any non-zero real numbers.

Hence, the eigen vector corresponding to $\lambda=2$ is

$$\begin{bmatrix} 0\\a\\0 \end{bmatrix} = a \begin{bmatrix} 0\\1\\0 \end{bmatrix} \forall a, \in R - \{0\}$$

For $\lambda = 3$,

The equation for eigen vector as

$$\begin{aligned} [A-I\lambda]X=0 \\ \Rightarrow \begin{bmatrix} -1-3 & 0 & 0 \\ 0 & 2-3 & 0 \\ 0 & 0 & 3-3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \Rightarrow \begin{bmatrix} -4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{aligned}$$

Thus, we get,

$$-4x_1 + 0x_2 + 0x_3 = 0$$
, $0x_1 - 1x_2 + 0x_3 = 0$ and $0x_1 + 0x_2 + 0x_3 = 0$

From these two equations we get, $x_1 = 0$, $x_2 = 0$ and $x_3 = a$, where a is any non-zero real numbers.

Hence, the eigen vector corresponding to $\lambda=3$ is

$$\begin{bmatrix} 0\\0\\a \end{bmatrix} = a \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \forall a, \in R - \{0\}$$

Note: -(1) the eigen value of a diagonal matrix areits diagonal elements.

(2) The eigen value of the matrix $A = [a_{ij}]_n$ is the same as the eigen values of its transpose A^T .

Example: -Find the Eigen values and eigen vectors for the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$.

Solution: -We know that for any given matrix

 $[A-\lambda I]X=0$ and $|A-\lambda I|=0$

$$\begin{bmatrix} \mathbf{A} - \lambda \mathbf{I} \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} = 0$$
$$\begin{bmatrix} \mathbf{A} - \lambda \mathbf{I} \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 1 & 2 - \lambda \end{bmatrix} = 0$$

: $(2 - \lambda)(1 - \lambda)(2 - \lambda) + 1(0 - (1 - \lambda)) = 0$ (Which is the characteristic equation of the given matrix.)

$$\therefore (2 - \lambda)(1 - \lambda)(2 - \lambda) - (1 - \lambda) = 0$$

$$\therefore (1 - \lambda)[(2 - \lambda)^2 - 1] = 0$$

$$\therefore (1 - \lambda)[(2 - \lambda - 1)(2 - \lambda + 1)] = 0$$

$$\therefore (1 - \lambda)[(1 - \lambda)(3 - \lambda)] = 0$$

 $\therefore \lambda = 1,3$ which is eigen values of given matrix A.

Now we will find the eigen vectors corresponding to the eigen values λ =1,3

For $\lambda = 1$,

The equation for eigen vector as

 $[A-I\lambda]X=0$

$$\Rightarrow \begin{bmatrix} 2 - 1 & 1 & 1 \\ 0 & 1 - 1 & 0 \\ 1 & 1 & 2 - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Thus, we get,

 $x_1 + x_2 + x_3 = 0$, $0x_1 + 0x_2 + 0x_3 = 0$ and $x_1 + x_2 + x_3 = 0$

From these equations we get, $x_1 = -(x_2 + x_3)$ if we take $x_2 = a$ and $x_3 = b$, then we get $x_1 = -(a + b)$ where a and bare any non-zero real numbers.

Hence, the eigen vector corresponding to $\lambda=1$ is

$$\begin{bmatrix} -(a+b) \\ a \\ b \end{bmatrix} = a \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \forall a, b \in R - \{0\}$$

For $\lambda = 3$,

The equation for eigen vector as

 $[A-I\lambda]X=0$ $\Rightarrow \begin{bmatrix} 2-3 & 1 & 1 \\ 0 & 1-3 & 0 \\ 1 & 1 & 2-3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} -1 & 1 & 1 \\ 0 & -2 & 0 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Thus, we get,

$$-x_1 + x_2 + x_3 = 0$$
, $0x_1 - 2x_2 + 0x_3 = 0$ and $x_1 + x_2 - x_3 = 0$

From these equations we get, $x_1 = x_3$, $x_2 = 0$ if we take $x_3 = a$ then we get, $x_1 = a$ where a is any non-zero real numbers.

Hence, the eigen vector corresponding to $\lambda=3$ is

$$\begin{bmatrix} a \\ 0 \\ a \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \forall a, \in R - \{0\}$$

Example: -Find the Eigen values and eigen vectors for the matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$.

Solution: -We know that for any given matrix

 $[A-\lambda I]X=0$ and $|A-\lambda I|=0$

$$\begin{bmatrix} A - \lambda I \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} = 0$$
$$\begin{bmatrix} A - \lambda I \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & -1 \\ 0 & 2 & 4 - \lambda \end{bmatrix} = 0$$

: $(2 - \lambda)[(\lambda)^2 - 5\lambda + 6] = 0$ (Which is the characteristic equation of the given matrix.)

$$\therefore (2-\lambda)(\lambda-3)(\lambda-2) = 0$$

 $\therefore \lambda = 2,3$ which is eigen values of given matrix A.

Now we will find the eigen vectors corresponding to the eigen values $\lambda=2,3$

For $\lambda = 2$,

The equation for eigen vector as

 $\begin{aligned} &[A-I\lambda]X=0\\ \Rightarrow \begin{vmatrix} 2-2 & 1 & 0\\ 0 & 1-2 & -1\\ 0 & 2 & 4-2 \end{vmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix}\\ \Rightarrow \begin{bmatrix} 0 & 1 & 0\\ 0 & -1 & -1\\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}\end{aligned}$

Thus, we get,

 $0x_1 + x_2 + 0x_3 = 0$, $0x_1 - x_2 - x_3 = 0$ and $0x_1 + 2x_2 + 2x_3 = 0$

From these equations we get, $x_2 = 0$, $x_3 = 0$ if we take $x_1 = a$ where a is any non-zero real numbers.

Hence, the eigen vector corresponding to $\lambda=2$ is

$$\begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \forall a \in R - \{0\}$$

For $\lambda = 3$,

The equation for eigen vector as

 $\begin{aligned} &[A-I\lambda]X=0 \\ \Rightarrow \begin{vmatrix} 2-3 & 1 & 0 \\ 0 & 1-3 & -1 \\ 0 & 2 & 4-3 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{vmatrix} \\ \Rightarrow \begin{bmatrix} -1 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{aligned}$

Thus, we get,

$$-x_1 + x_2 + 0x_3 = 0$$
, $0x_1 - 2x_2 - x_3 = 0$ and $0x_1 + 2x_2 + x_3 = 0$

From these equations we get, $x_1 = x_2$, $x_3 = -2x_2$ if we take $x_2 = a$ then we get, $x_1 = a$ and $x_3 = -2a$ where a is any non-zero real numbers.

Hence, the eigen vector corresponding to $\lambda=3$ is

$$\begin{bmatrix} a \\ a \\ -2a \end{bmatrix} = a \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \forall a, \in R - \{0\}$$

Example: -Find the Eigen values and eigen vectors for the

matrixA= $\begin{bmatrix} 0 & -2 & -2 \\ -2 & -3 & -2 \\ 3 & -6 & 5 \end{bmatrix}$.

 $[A-\lambda I]X=0$ and $|A-\lambda I|=0$

Solution: -We know that for any given matrix

$$[A-\lambda I] = \begin{bmatrix} 0 & -2 & -2 \\ -2 & -3 & -2 \\ 3 & -6 & 5 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -2 & -2 \\ -2 & -3 & -2 \\ 3 & -6 & 5 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} = 0$$
$$[A-\lambda I] = \begin{bmatrix} 0-\lambda & -2 & -2 \\ -2 & -3-\lambda & -2 \\ 3 & -6 & 5-\lambda \end{bmatrix} = 0$$

$$\therefore -\lambda[(-3 - \lambda)(5 - \lambda) - 12] + 2[-2(5 - \lambda) + 6] - 2[12 - 3(-3 - \lambda)] = 0 \therefore -\lambda[\lambda^2 - 2\lambda - 27] + 2[2\lambda - 4] - 2[(21 + 3\lambda)] = 0 \therefore [-\lambda^3 + 2\lambda^2 + 27\lambda] + [4\lambda - 8] + [(-42 - 6\lambda)] = 0 \therefore -\lambda^3 + 2\lambda^2 + 25\lambda - 50 = 0$$

: $\lambda^3 - 2\lambda^2 - 25\lambda + 50 = 0$ (This is the characteristic equation of the given matrix.)

$$\therefore (\lambda - 2)[(\lambda)^2 - 25] = 0$$

$$\therefore (\lambda - 2)(\lambda - 5)(\lambda + 5) = 0$$

 $\therefore \lambda = 2,5,-5$ which are the eigen values of given matrix A.

Another method to find eigen value

$$\lambda^3 - D_1 \lambda^2 + D_2 \lambda - |A| = 0$$

Where, $D_1 = 0 + (-3) + 5 = 2$ The diagonal element of matrix.

Where,
$$D_2 = \begin{vmatrix} -3 & -2 \\ -6 & 5 \end{vmatrix} + \begin{vmatrix} 0 & -2 \\ 3 & 5 \end{vmatrix} + \begin{vmatrix} 0 & -2 \\ -2 & -3 \end{vmatrix} = (-15 - 12) + 6 - 4 = -25$$

And $|A| = \begin{vmatrix} 0 & -2 & -2 \\ -2 & -3 & -2 \\ 3 & -6 & 5 \end{vmatrix} = -50$
 $\lambda^3 - 2\lambda^2 - 25\lambda + 50 = 0$

Now we will find the eigen vectors corresponding to the eigen values λ =2,5,-5

For $\lambda = 2$,

The equation for eigen vector as

$$\begin{bmatrix} A - I\lambda \end{bmatrix} X = 0$$

$$\Rightarrow \begin{bmatrix} 0 - 2 & -2 & -2 \\ -2 & -3 - 2 & -2 \\ 3 & -6 & 5 - 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Thus, we get,

 \Rightarrow

$$-\lambda x_1 - 2x_2 - 2x_3 = 0, -2x_1 + (-3 - \lambda)x_2 - 2x_3 = 0 \text{ and } 3x_1 - 6x_2 + (5 - \lambda)x_3 = 0$$

For $\lambda = 2$,
$$-2x_1 - 2x_2 - 2x_3 = 0, -2x_1 + (-3 - 2)x_2 - 2x_3 = 0 \text{ and } 3x_1 - 6x_2 + (5 - 2)x_3 = 0$$

$$x_1 + x_2 + x_3 = 0, -2x_1 - 5x_2 - 2x_3 = 0 \text{ and } x_1 - 2x_2 + x_3 = 0$$

we get, $x_2 = 0, x_3 + x_1 = 0$

From these equations we get, $x_2 = 0, x_3 = -x_1$ if we take $x_1 = a$ then we get $x_3 = -a$ where a is any non-zero real numbers.

Hence, the eigen vector corresponding to $\lambda=2$ is

$$\begin{bmatrix} a \\ 0 \\ -a \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \forall a \in R - \{0\}$$

For $\lambda = 5$,
 $-5x_1 - 2x_2 - 2x_3 = 0, -2x_1 + (-3 - 5)x_2 - 2x_3 = 0 \text{ and } 3x_1 - 6x_2 + (5 - 5)x_3 = 0$
 $-5x_1 - 2x_2 - 2x_3 = 0, -2x_1 - 8x_2 - 2x_3 = 0 \text{ and } 3x_1 - 6x_2 + 0x_3 = 0$
 $-5x_1 - 2x_2 - 2x_3 = 0$ (1) $x_1 + 4x_2 + x_3 = 0$ (2) and $x_1 - 2x_2 = 0$ (3)
From (1) and (2) we get $x_1 = 2x_2$ and put the value $x_1 = 2x_2$ in equation (1) or
(2) then we get $x_3 = -6x_2$

if we take $x_2 = a$ then we get $x_1 = 2a$ and $x_3 = -6a$ where a is any non-zero real numbers.

Hence, the eigen vector corresponding to λ =5 is

$$\begin{bmatrix} 2a \\ a \\ -6a \end{bmatrix} = a \begin{bmatrix} 2 \\ 1 \\ -6 \end{bmatrix} \quad \forall a \in R - \{0\}$$

For $\lambda = -5$,

$$5x_{1} - 2x_{2} - 2x_{3} = 0, -2x_{1} + (-3 + 5)x_{2} - 2x_{3} = 0 \text{ and } 3x_{1} - 6x_{2} + (5 + 5)x_{3} = 0$$

$$5x_{1} - 2x_{2} - 2x_{3} = 0, -2x_{1} + 2x_{2} - 2x_{3} = 0 \text{ and } 3x_{1} - 6x_{2} + 10x_{3} = 0$$

$$5x_{1} - 2x_{2} - 2x_{3} = 0$$

$$(1), x_{1} - x_{2} + x_{3} = 0$$

$$(2) \text{ and } 3x_{1} - 6x_{2} + 10x_{3} = 0$$

$$(3)$$

Remove x_1 from (1), (2) and (3) then we get $3x_2 = 7x_3$ and put the value in equation (1) or (2) or (3) then we get $3x_1 = 4x_3$

if we take $x_3 = a$ then we get $x_1 = \frac{4}{3}a$ and $x_2 = \frac{7}{3}a$ where a is any non-zero real numbers.

Hence, the eigen vector corresponding to λ =5 is

$$\begin{bmatrix} \frac{4}{3}a\\ \frac{7}{3}a\\ a \end{bmatrix} = a \begin{bmatrix} \frac{4}{3}\\ \frac{7}{3}\\ \frac{7}{3}\\ 1 \end{bmatrix} \quad \forall a \in R - \{0\}$$

Example: - If $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$ are the eigen values of matrix $A = [a_{ij}]_n$, then prove that $\lambda_1^3, \lambda_2^3, \lambda_3^3, ..., \lambda_n^3$ are the eigen values of A^3 .

Solution: - Here $A^n = A.A.A...A$ (n times).

Hence $A^3 = A^2 \cdot A = A \cdot A \cdot A$

Let λ be an eigen value of A. therefore there exist a non-zero column matrix X such that

$$AX = \lambda X$$
(1)

 $\Rightarrow A^{2}AX = A^{2}(\lambda X)$ $\Rightarrow A^{3}X = \lambda A^{2}X$ (2)

But $A^2X = A(AX) = A(\lambda X) = \lambda(AX) = \lambda(\lambda X) = \lambda^2 X$ (\because from equation (1))

Thus, we get $A^2 X = \lambda^2 X$ (3)

Put the value of equation (3) in equation (2) then, we get $A^{3}X = \lambda^{3}X$

 $\therefore \lambda^3$ is the eigen value of A³.

Thus, if $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$ are the eigen values of matrix $A = [a_{ij}]_n$, then $\lambda_1^3, \lambda_2^3, \lambda_3^3, ..., \lambda_n^3$ are the eigen values of A^3 .

Example: - If λ is the eigen values of matrix $A = [a_{ij}]_n$, then prove that

(i) $\frac{1}{\lambda}$ is the eigen values of A⁻¹. (ii) $\frac{|A|}{\lambda}$ is the eigen values of *adj* A.

Solution: -

Let λ be an eigen value of A. therefore, there exist a non-zero column matrix X such that $AX = \lambda X$

$$\therefore \mathbf{X} = \mathbf{A}^{-1}\lambda \mathbf{X} = \lambda \mathbf{A}^{-1}\mathbf{X}$$
$$\therefore \frac{1}{\lambda}\mathbf{X} = \mathbf{A}^{-1}\mathbf{X}$$

This prove that $\frac{1}{\lambda}$ is the eigen values of A⁻¹.

(ii) Let λ be an eigen value of A. therefore, there exist a non-zero column matrix

X such that $AX = \lambda X$

$$\Rightarrow adj A (AX) = adj A (\lambda X)$$

 $\Rightarrow (adj \land A)(X) = \lambda (adj \land)X$

$$(because A^{-1} = \frac{adj A}{|A|} = adj A = A^{-1}|A| \Longrightarrow adj A A = |A|)$$

$$\Rightarrow |A| (X) = \lambda (adj A) X$$
$$\Rightarrow \frac{|A|}{\lambda} (X) = (adj A) X$$

This prove that $\frac{|A|}{\lambda}$ is the eigen values of *adj* A.

Theorem: (Cayley- Hamilton Theorem) (without proof)

Every square matrix $A = [a_{ij}]_n$ satisfies its own characteristic equation. i.e. If $|A - \lambda I_n| = (-1)^2 \lambda^n + k_1 \lambda^{n-1} + k_2 \lambda^{n-2} + \dots + k_n = 0$ is the characteristic equation of A, then $(-1)^2 A^n + k_1 A^{n-1} + k_2 A^{n-2} + \dots + k_n = 0$

Example: Verify Calay-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -4 & -1 \\ 0 & 3 & 4 \\ 1 & 6 & 2 \end{bmatrix}$. Also using this theorem find A:

Solution: - Here
$$A = \begin{bmatrix} 2 & -4 & -1 \\ 0 & 3 & 4 \\ 1 & 6 & 2 \end{bmatrix}$$

: the characteristic equation of the matrix A is $[A-\lambda I] = 0$

$$\begin{bmatrix} 2 - \lambda & -4 & -1 \\ 0 & 3 - \lambda & 4 \\ 1 & 6 & 2 - \lambda \end{bmatrix} = 0$$

$$\therefore (2 - \lambda)[(3 - \lambda)(2 - \lambda) - 24] + 4[0 - 4] - 1[0 - (3 - \lambda)] = 0$$

$$\therefore (2 - \lambda)[\lambda^2 - 5\lambda + 6 - 24] - 16 + 3 - \lambda = 0$$

$$\therefore (2 - \lambda)[\lambda^2 - 5\lambda - 18] - 16 + 3 - \lambda = 0$$

$$\therefore -\lambda^3 + 7\lambda^2 - 7\lambda - 49 = 0$$

This is the characteristic equation of the given matrix.

$$\lambda^3 - D_1 \lambda^2 + D_2 \lambda - |A| = 0$$

Where, $D_1 = 2 + 3 + 2 = 7$ The diagonal element of matrix.

Where,
$$\mathbf{D}_2 = \begin{vmatrix} 3 & 4 \\ 6 & 2 \end{vmatrix} + \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix} = (6-24) + (4+1) + 6 = -7$$

And $|A| = \begin{vmatrix} 2 & -4 & -1 \\ 0 & 3 & 4 \\ 1 & 6 & 2 \end{vmatrix} = 2(6-24) + 4(0-4) - (0-3) = -36 - 16 + 3 = -49$

$$\lambda^{3} - 7\lambda^{2} - 7\lambda + 49 = \mathbf{0}$$

Now, A² = $\begin{bmatrix} 2 & -4 & -1 \\ 0 & 3 & 4 \\ 1 & 6 & 2 \end{bmatrix}$. $\begin{bmatrix} 2 & -4 & -1 \\ 0 & 3 & 4 \\ 1 & 6 & 2 \end{bmatrix}$
= $\begin{bmatrix} 4+0-1 & -8-12-6 & -2-16-2 \\ 0+0+4 & 0+9+24 & 0+12+8 \\ 2+0+2 & -4+18+12 & -1+24+4 \end{bmatrix}$ = $\begin{bmatrix} 3 & -26 & -20 \\ 4 & 33 & 20 \\ 4 & 26 & 27 \end{bmatrix}$

Now,
$$A^3 = A$$
. $A^2 = \begin{bmatrix} 2 & -4 & -1 \\ 0 & 3 & 4 \\ 1 & 6 & 2 \end{bmatrix} \begin{bmatrix} 3 & -26 & -20 \\ 4 & 33 & 20 \\ 4 & 26 & 27 \end{bmatrix}$

$$= \begin{bmatrix} 6-16-4 & -52-132-26 & -40-80-27\\ 0+12+16 & 0+99+104 & 0+60+108\\ 3+24+8 & -26+198+52 & -20+120+54 \end{bmatrix} = \begin{bmatrix} -14 & -210 & -147\\ 28 & 203 & 168\\ 35 & 224 & 154 \end{bmatrix}$$

Now, verify Caley Hamilton theorem

 $\lambda^3-7\lambda^2-7\lambda+49=0~$ put $~\lambda$ =A then we get,

$$A^3 - 7A^2 - 7A + 49I_3 = 0$$

$$= \begin{bmatrix} -14 & -210 & -147 \\ 28 & 203 & 168 \\ 35 & 224 & 154 \end{bmatrix} - 7 \begin{bmatrix} 3 & -26 & -20 \\ 4 & 33 & 20 \\ 4 & 26 & 27 \end{bmatrix} - 7 \begin{bmatrix} 2 & -4 & -1 \\ 0 & 3 & 4 \\ 1 & 6 & 2 \end{bmatrix} + 49 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -14 & -210 & -147 \\ 28 & 203 & 168 \\ 35 & 224 & 154 \end{bmatrix} + \begin{bmatrix} -21 & 182 & 140 \\ -28 & -231 & -140 \\ -28 & -182 & -189 \end{bmatrix}$$
$$+ \begin{bmatrix} -14 & 28 & 7 \\ 0 & -21 & -28 \\ -7 & -42 & -14 \end{bmatrix} + \begin{bmatrix} 49 & 0 & 0 \\ 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix}$$
$$= \begin{bmatrix} -14 - 21 - 14 + 49 & -210 + 182 + 28 & -147 + 140 + 7 + 0 \\ 28 - 28 + 0 & 203 - 231 - 21 + 49 & 168 - 140 - 28 + 0 \\ 35 - 28 - 7 & 224 - 182 - 42 + 0 & 154 - 189 - 14 + 49 \end{bmatrix}$$

 $= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Thus, we get $A^3 - 7A^2 - 7A + 49I_3 = 0$

Therefore, Caley Hamilton theorem is verified.

Multiplying by A^{-1} to the equation $A^3 - 7A^2 - 7A + 49I_3 = 0$

Then, we get
$$A^2 - 7A - 7I_3 + 49A^{-1} = 0 \implies A^{-1} = \frac{1}{49}(-A^2 + 7A + 7I_3)$$

$$= \frac{1}{49} \left(\begin{bmatrix} -3 & 26 & 20 \\ -4 & -33 & -20 \\ -4 & -26 & -27 \end{bmatrix} + 7 \begin{bmatrix} 2 & -4 & -1 \\ 0 & 3 & 4 \\ 1 & 6 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)$$

$$= \frac{1}{49} \left(\begin{bmatrix} -3 + 14 + 7 & 26 - 28 + 0 & 20 - 7 + 0 \\ -4 + 0 + 0 & -33 + 21 + 7 & -20 + 28 + 0 \\ -4 + 7 + 0 & -26 + 42 + 0 & -27 + 14 + 7 \end{bmatrix} \right)$$

$$= \frac{1}{49} \left(\begin{bmatrix} 18 & -2 & 13 \\ -4 & -5 & 8 \\ 3 & 16 & -6 \end{bmatrix} \right)$$

Check

 $AA^{-1} = I$

$$= \begin{bmatrix} 2 & -4 & -1 \\ 0 & 3 & 4 \\ 1 & 6 & 2 \end{bmatrix} \frac{1}{49} \left(\begin{bmatrix} 18 & -2 & 13 \\ -4 & -5 & 8 \\ 3 & 16 & -6 \end{bmatrix} \right)$$
$$= \begin{bmatrix} \frac{36}{49} + \frac{16}{49} - \frac{3}{49} & \frac{-4}{49} + \frac{20}{49} - \frac{16}{49} & \frac{26}{49} - \frac{32}{49} + \frac{6}{49} \\ 0 - \frac{12}{49} + \frac{12}{49} & 0 + \frac{-15}{49} + \frac{64}{49} & 0 + \frac{24}{49} - \frac{24}{49} \\ \frac{18}{49} - \frac{24}{49} + \frac{6}{49} & \frac{-2}{49} - \frac{30}{49} + \frac{32}{49} & \frac{13}{49} + \frac{48}{49} - \frac{12}{49} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Example: Verify Calay-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$. Also using this theorem find A⁻¹.

Solution: - Here
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$

: the characteristic equation of the matrix A is $[A-I\lambda] = 0$

$$\begin{bmatrix} 1-\lambda & 1 & 3\\ 1 & 3-\lambda & -3\\ -2 & -4 & -4-\lambda \end{bmatrix} = 0$$

$$\therefore (1-\lambda)[(3-\lambda)(-4-\lambda)-12]-1[(-4-\lambda)-6]+3[-4+2(3-\lambda)] = 0$$

$$\therefore (1-\lambda)[(3-\lambda)(-4-\lambda)-12]-1[(-4-\lambda)-6]+3[-4+2(3-\lambda)] = 0$$

$$\therefore (1 - \lambda)[\lambda^2 + \lambda - 24] \cdot 1[(-10 - \lambda)] + 3[-2 - 2\lambda)] = 0$$
$$\therefore -\lambda^3 + 20\lambda + 8 = 0$$

This is the characteristic equation of the given matrix.

$$\lambda^3 - D_1 \lambda^2 + D_2 \lambda - |A| = 0$$

Where, $D_1 = 1 + 3 - 4 = 0$ The diagonal element of matrix.

Where, $D_2 = \begin{vmatrix} 3 & -3 \\ -4 & -4 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ -2 & -4 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = (-12 - 12) + (-4 + 6) + (3 - 1) = -24 + 2 + 2 = 20$ And $|A| = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{vmatrix} = 1(-12 - 12) - 1(-4 - 6) + 3(-4 + 6) = -24 + 10 + 6 = -8$ $\lambda^3 + 20\lambda + 8 = 0$

Now, $A^2 = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$

$$= \begin{bmatrix} 1+1-6 & 1+3-12 & 3-3-12 \\ 1+3+6 & 1+9+12 & 3-9+12 \\ -2-4+8 & -2-12+16 & -6+12+16 \end{bmatrix} = \begin{bmatrix} -4 & -8 & -12 \\ 10 & 22 & 6 \\ 2 & 2 & 22 \end{bmatrix}$$

Now,
$$A^3 = A$$
. $A^2 = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix} \begin{bmatrix} -4 & -8 & -12 \\ 10 & 22 & 6 \\ 2 & 2 & 22 \end{bmatrix}$

$$= \begin{bmatrix} -4+10+6 & -8+22+6 & -12+6+66 \\ -4+30-6 & -8+66-6 & -12+18-66 \\ 8-40-8 & 16-88-8 & 24-24-88 \end{bmatrix} = \begin{bmatrix} 12 & -20 & 60 \\ 20 & 52 & -60 \\ -40 & -80 & -88 \end{bmatrix}$$

Now, verify Caley Hamilton theorem

 $\lambda^3 + 20\lambda + 8 = 0$ put $\lambda = A$ then we get,

$$A^{3} - 20A + 8I_{3} = 0$$

$$= \begin{bmatrix} 12 & -20 & 60 \\ 20 & 52 & -60 \\ -40 & -80 & -88 \end{bmatrix} - 20 \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix} + 8 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 12 & -20 & 60 \\ 20 & 52 & -60 \\ -40 & -80 & -88 \end{bmatrix} + \begin{bmatrix} -20 & -20 & -60 \\ -20 & -60 & 60 \\ 40 & 80 & 80 \end{bmatrix} + \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} 12 - 20 + 8 & -20 - 20 + 0 & 60 - 60 + 0 \\ 20 - 20 + 0 & 52 - 60 + 8 & -60 + 60 + 0 \\ -40 + 40 + 0 & -80 + 80 + 0 & -88 + 80 + 8 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, we get $A^3 - 20A + 8I_3 = 0$

Therefore, Caley Hamilton theorem is verified.

Multiplying by A⁻¹ to the equation $A^3 - 20A + 8I_3 = 0$. Then, we get $A^2 - 20I_3 + 8A^{-1} = 0$

$$A^{-1} = \frac{1}{8} (-A^2 + 20I_3) = \frac{1}{8} \left(\begin{bmatrix} 4 & 8 & 12 \\ -10 & -22 & -6 \\ -2 & -2 & -22 \end{bmatrix} + 20 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)$$
$$= \frac{1}{8} \begin{bmatrix} 24 & 8 & 12 \\ -10 & -2 & -6 \\ -2 & -2 & -2 \end{bmatrix}$$

Check

 $AA^{-1} = I$

$$= \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}^{\frac{1}{8}} \begin{bmatrix} 24 & 8 & 12 \\ -10 & -2 & -6 \\ -2 & -2 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 3 - \frac{5}{4} - \frac{3}{4} & 1 - \frac{1}{4} - \frac{3}{4} & \frac{3}{2} - \frac{3}{4} - \frac{3}{4} \\ 3 - \frac{15}{4} + \frac{3}{4} & 1 - \frac{3}{4} + \frac{3}{4} & \frac{3}{2} - \frac{9}{4} + \frac{3}{4} \\ -6 + 5 + 1 & -2 + 1 + 1 & -3 + 3 + 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Simultaneous linear equations and their solution:

Definition:- linear equations

If $a_1, a_2, a_3, ..., a_n$ and b are real numbers and $x_1, x_2, x_3, ..., x_n$ are variables, then $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_nx_n = b$ is called a linear equation in n variables $x_1, x_2, x_3, ..., x_n$.

Note: consider a system of m linear equations in n unknowns $x_1, x_2, x_3, ..., x_n$ in the following form:

 $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

Here $b_i, a_{ij} \in R$ (i = 1, 2, ..., m; j = 1, 2, 3, ..., n) are the fixed numbers. If we get $x = (k_1, k_2, k_3, ..., k_n) \in R^n$ such that $x_1 = k_1, x_2 = k_2, x_3 = k_3, ..., x_n = k_n$ satisfy above the system of equations then *x* is called a solution of the above system of equations. The set of all possible solutions of above system of equations is called **the solution set** above system of equations.

Above system of equations can be linearly written as $\sum_{j=1}^{n} a_{ij} x_j = b_i$, $i = b_i$

1,2,3,..., *m*. If we put A =
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
, X = $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ and B = $\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$ then

The above system of equations can be expressed in the matrix form A X = B.

Here A is called the coefficient matrix of the above system of equations.

If $b_1 = b_2 = b_3 = \cdots = b_m = 0$, then the system of above equations is called **Homogeneous system**.

Definition: - Homogeneous systemof equations

Consider a system of m linear equations in n unknowns $x_1, x_2, x_3, ..., x_n$ in the following form:

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = 0$$

$$a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} + \dots + a_{2n}x_{n} = 0$$

$$a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} + \dots + a_{3n}x_{n} = 0$$

.....

$$a_{m1}x_{1} + a_{m2}x_{2} + a_{m3}x_{3} + \dots + a_{mn}x_{n} = 0$$

is called Homogeneous system of equations.

Note: If $x_1 = 0$, $x_2 = 0$, $x_3 = 0$... $x_n = 0$ is a solution of homogeneous system of equations then it is called **trivial solution** of the system and any other solution is called **non-trivial** solution.

Definition: -augmented matrix.

For the above system A X = B, the matrix
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$
 is called

augmented matrix and is denoted by the symbol [A,B]

Theorem: -The nonhomogeneous system as $\sum_{j=1}^{n} a_{ij} x_j = b_i$, i = 1, 2, 3, ..., m.of linear equations has a solution if and only if the ranks of coefficient matrix and augmented matrix are equal.

Proof: -Let us suppose that the solution of the given system exists and let it be $(k_1, k_2, k_3, ..., k_n) \in \mathbb{R}^n$.

The given system can be expressed as

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_{2} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_{n} \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

If $(k_{1}, k_{2}, k_{3}, \dots, k_{n})$ is the solution of the given system then $\begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$ can be expressed

as a linear combination of the column matrices of $A = [a_{ij}]_n$.

Therefore, the number of linearly independent column matrices of A and [A, B] is same.

Hence, ranks of A and [A, B] are equal.

Conversely,

Let us suppose that ranks of A and [A, B] are equal.

Thus,
$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$
 must be a linear combination of the column matrices of A

Therefore, their exists real numbers $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ such that

$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \alpha_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + \alpha_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + \alpha_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Therefore, $(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n) \in \mathbb{R}^n$ is the solution of the given system.

Theorem: -If $s = (s_1, s_2, s_3, ..., s_n) \in \mathbb{R}^n$ is a particular solution of the nonhomogeneous system of equation $\sum_{j=1}^n a_{ij}x_j = b_i$, i = 1, 2, 3, ..., m. and $x = (k_1, k_2, k_3, ..., k_n) \in \mathbb{R}^n$ is a solution of the homogeneous system of equation $\sum_{j=1}^n a_{ij}x_j = 0$ i = 1, 2, 3, ..., m. then s + x is a solution of the system $\sum_{j=1}^n a_{ij}x_j = b_i$, i = 1, 2, 3, ..., m. Moreover each solution of this system is of the form s + x.

Proof: -System of equations $\sum_{j=1}^{n} a_{ij} x_j = b_i$, i = 1, 2, 3, ..., m. ____(1)

and
$$\sum_{j=1}^{n} a_{ij} x_j = 0$$
 $i = 1, 2, 3, ..., m.$ (2)

Now, for s +x=($s_1 + k_1, s_2 + k_2, s_3 + k_3, ..., s_n + k_n$)

$$\sum_{j=1}^{n} a_{ij}(s_j + k_j) = \sum_{j=1}^{n} a_{ij}s_j + \sum_{j=1}^{n} a_{ij}k_j = b_i, i = 1, 2, 3, \dots, m.$$

Because $\sum_{j=1}^{n} a_{ij} x_j = b_i$, i = 1, 2, 3, ..., m. and $\sum_{j=1}^{n} a_{ij} x_j = 0$ i = 1, 2, 3, ..., m.

Let us suppose that $y = (l_1, l_2, l_3, ..., l_n)$ is the any solution of the given system (1). Then y-s = $(l_1 - s_1 l_2 - s_2 l_3 - s_3 ..., l_n - s_n)$

Therefore, $\sum_{j=1}^{n} a_{ij}(l_j - s_j) = \sum_{j=1}^{n} a_{ij}l_j - \sum_{j=1}^{n} a_{ij}s_j = b_i - b_i = 0, i = 1,2,3, ..., m.$

Therefore y-s is a solution of the homogeneous system (2).

Put y - s = x.

Thus, every solution of system (1) if equations is of the form s + x.

Theorem: -Let $\sum_{j=1}^{n} a_{ij} - x_i = 0$ (i = 1, 2, 3, ..., n) be system of n equations in n unknowns. If the coefficient matrix of the system is singular (not invertible), then and only then the system has a non-trivial solution.

Proof: -Let $A = [a_{ij}]_n$ is a coefficient matrix of the given system. The given system can be expressed in the form

 $x_1c_1 + x_2c_2 + \dots + x_nc_n = 0$ (1)

Where c_1, c_2, \ldots, c_n are column matrices of A.

If the given system has a non-trivial solution, then there exists $i \in \{1,2,3,...,n\}$ such that $x_i \neq 0$. It is clear from result (1) that the column matrices of the matrix A are linearly dependent.

Therefore, the rank of A is less than n.

i.e. |A| = 0 or A is singular.

Conversely,

If A is singular, then r(A) < n.

Therefore, the column matrices of A are linearly dependent. Consequently some x_i is non-zero.

Therefore, the given system has a non-trivial solution.

Theorem: - Let $\sum_{j=1}^{n} a_{ij} x_j = b_i$, i = 1,2,3, ..., n be system of n equations in n unknowns. This system has a unique solution if and only if the coefficient matrix is invertible. (i. e. it has an inverse.)

Proof: -Let $A = [a_{ij}]_n$ is a coefficient matrix of the given system.

If A is invertible, then r(A) = n.

Also, from
$$\sum_{j=1}^{n} a_{ij} x_j = b_i$$
, $i = 1, 2, 3, ..., n$. It is clear that $\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$ is a linear

combination of the column matrices of A.

 \therefore r[A] = r [A, B], where [A, B] is the augmented matrix of the system.

 \therefore the system has a solution.

Let $x = (k_1, k_2, k_3, ..., k_n) \in \mathbb{R}^n$ be solution of the system. The homogeneous system corresponding to the given system is

 $\sum_{i=1}^{n} a_{ij} x_i = 0 \ i = 1, 2, 3, \dots, n.$ (1)

A is invertible.

Hence, the system (1) cannot have a non-trivial solution.

 $\therefore x_1 = 0, x_2 = 0, x_3 = 0, \dots, x_n = 0$ is the solution of the system (1).

So, given system has a unique solution x + 0 = x.

Conversely,

Let us suppose that the given system has unique solution. Consequently, the corresponding homogeneous system has only trivial solution. Thus, the coefficient matrix A is invertible.

Crammer's Rule:-Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}_n$ be square matrix with $|A| \neq 0$. Let $B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$ be column vector. Then the solution of AX = B is given by $x_j = \frac{|A_1, \dots, B, \dots, A_n|}{|A|}$ Or $x_j = \frac{\det(A_1, \dots, B, \dots, A_n)}{\det(A)}$ Where, B is in the jth place.

i.e.

Consider the system AX = B of n linear equations in n unknowns, where A

$$= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

If $|A| \neq 0$, then A⁻¹ exists.

Now
$$AX = B \Rightarrow X = A^{-1}B$$
.
But $A^{-1} = \frac{adj A}{|A|}$
 $\therefore X = \frac{adj A}{|A|}B. = \frac{1}{|A|} \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$. Where A_{ij} is the cofactor of a_{ij} in $|A|$

Thus,
$$x_1 = \frac{|A_1|}{|A|}$$
, $x_2 = \frac{|A_2|}{|A|}$, ..., $x_i = \frac{|A_i|}{|A|}$, ..., $x_n = \frac{|A_n|}{|A|}$ Where A_i is the matrix obtained from A by replacing the ith column by constant column $\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$. This

method of solving n equations is known as crammer's rule.

Note: The system of linear equations is called consistent if it has a solution. If it does not have any solution, then it is called in consistent.

Example: -Solve 5x + 3y + 7z = 4; 3x + 26y + 2z = 9; 7x + 2y + 11z = 5 using Crammer's rule.

Solution: - Here A =
$$\begin{bmatrix} 5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 11 \end{bmatrix}$$
, X = $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and B = $\begin{bmatrix} 4 \\ 9 \\ 5 \end{bmatrix}$
|A| = $\begin{vmatrix} 5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 11 \end{vmatrix}$ = 5(286-4)-3(33-14)+7(6-182) = 1410-57-1232=121

$$x = \frac{\begin{vmatrix} 4 & 3 & 7 \\ 9 & 26 & 2 \\ 5 & 2 & 11 \end{vmatrix}}{|A|} = \frac{77}{121}y = \frac{\begin{vmatrix} 5 & 4 & 7 \\ 3 & 9 & 2 \\ 7 & 5 & 11 \end{vmatrix}}{|A|} = \frac{33}{121} \text{ and } z = \frac{\begin{vmatrix} 5 & 3 & 4 \\ 3 & 26 & 9 \\ 7 & 2 & 5 \end{vmatrix}}{|A|} = \frac{0}{121}$$

Example: -Solve x + y = 0; y + z = 1; x + z = -1 using Crammer's rule.

Solution: - Here A =
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
, X = $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and B = $\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$
 $|A| = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 1(1-0)-1(0-1)+0(0-1) = 2$
 $x = \frac{\begin{vmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 1 \end{vmatrix} = \frac{-2}{2} = -1y = \frac{\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 1 \\ |A| \end{vmatrix} = \frac{2}{2} = 1 \text{ and } z = \frac{\begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{vmatrix} = \frac{0}{2} = 0$
Example: -Solve $2x + y = 0; 3y + z = 1; x + 4z = 2$ using Crammer's rule.
Solution: - Here A = $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 1 & 0 & 4 \end{bmatrix}$, X = $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and B = $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

$$|A| = \begin{vmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 1 & 0 & 4 \end{vmatrix} = 2(12 \cdot 0) \cdot 1(0 \cdot 1) + 0(0 \cdot 3) = 24 + 1 + 0 = 25$$
$$x = \frac{\begin{vmatrix} 0 & 1 & 0 \\ 1 & 3 & 1 \\ 2 & 0 & 4 \end{vmatrix}}{|A|} = \frac{-2}{25}y = \frac{\begin{vmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 4 \end{vmatrix}}{|A|} = \frac{4}{25} \text{ and } z = \frac{\begin{vmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 1 & 0 & 2 \end{vmatrix}}{|A|} = \frac{13}{25}$$

Example: -Solve the following system of equations. **OR** Prove that following system of equations is consistent.

$$2x + 5y + 6z = 13; 3x + y - 4z = 0; x - 3y - 8z = -10.$$

Solution: -Augmented matrix is $[A, B] = \begin{bmatrix} 2 & 5 & 6 & 13 \\ 3 & 1 & -4 & 0 \\ 1 & -3 & -8 & -10 \end{bmatrix}$

$$R_{1} \leftrightarrow R_{3} \sim \begin{bmatrix} 1 & -3 & -8 & -10 \\ 3 & 1 & -4 & 0 \\ 2 & 5 & 6 & 13 \end{bmatrix}$$

$$R_{2} \rightarrow R_{2} \cdot 3R_{1}, R_{3} \rightarrow R_{3} \cdot 2R_{1} \sim \begin{bmatrix} 1 & -3 & -8 & -10 \\ 0 & 10 & 20 & 30 \\ 0 & 11 & 22 & 33 \end{bmatrix}$$

$$R_{2} \rightarrow \frac{1}{10}R_{2}, R_{3} \rightarrow \frac{1}{11}R_{3} \text{then } R_{3} \rightarrow R_{3} \cdot R_{2} \sim \begin{bmatrix} 1 & -3 & -8 & -10 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$r(A, B) = r(A) = 2 < 3$$

So, the given system is consistent. Solution is not unique. i.e., system has infinite solution.

Also, the given system of equations is equivalent to

$$x - 3y - 8z = -10$$
 -----(1)

$$y + 2z = 3$$
 -----(2)

from (2) we get y = 3-2z, so, (1) gives x=-10+9-6z+8z = -1+2z

so, the solution is -1 + 2k, 3-2k, k where $k \in \mathbb{R}$.

Thus, set of all solution is

=(-1 +2k, 3-2k, k)/k \in R} = {(-1,3,0) +k(2, -2, 1)/k \in R}

Example: -Solve the following system of equations

5x + 3y + 7z = 4; 3x + 26y + 2z = 9; 7x + 2y + 11z = 5.

Solution

Example: -Solve the following system of equations. **OR** Prove that following system of equations is consistent.2x + y = 0; 3y + z = 1; x + 4z = 2.

Solution: - Here Augmented matrix is $[A, B] = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 3 & 1 & 1 \\ 1 & 0 & 4 & 2 \end{bmatrix}$

$$R_{1} \leftrightarrow R_{3} \sim \begin{bmatrix} 1 & 0 & 4 & 2 \\ 0 & 3 & 1 & 1 \\ 2 & 1 & 0 & 0 \end{bmatrix}$$

$$R_{3} \rightarrow R_{3} - 2R_{1} \sim \begin{bmatrix} 1 & 0 & 4 & 2 \\ 0 & 3 & 1 & 1 \\ 0 & 1 & -8 & -4 \end{bmatrix} R_{2} \leftrightarrow R_{3} \sim \begin{bmatrix} 1 & 0 & 4 & 2 \\ 0 & 1 & -8 & -4 \\ 0 & 3 & 1 & 1 \end{bmatrix}$$

$$R_{3} \rightarrow R_{3} - 3R_{2} \sim \begin{bmatrix} 1 & 0 & 4 & 2 \\ 0 & 1 & -8 & -4 \\ 0 & 0 & 25 & 13 \end{bmatrix} R_{3} \rightarrow \frac{1}{25}R_{3} \sim \begin{bmatrix} 1 & 0 & 4 & 2 \\ 0 & 1 & -8 & -4 \\ 0 & 0 & 1 & \frac{13}{25} \end{bmatrix}$$

$$R_{2} \rightarrow R_{2} + 8R_{3}, R_{1} \rightarrow R_{1} - 4R_{3} \sim \begin{bmatrix} 1 & 0 & 0 & \frac{-2}{25} \\ 0 & 1 & 0 & \frac{4}{25} \\ 0 & 0 & 1 & \frac{13}{25} \end{bmatrix}$$

 $\mathbf{r}(\mathbf{A},\mathbf{B}) = \mathbf{r}(\mathbf{A}) = \mathbf{3}$

So, the given system is consistent and has unique solution

 $x = \frac{-2}{25}y = \frac{4}{25}$ and $z = \frac{13}{25}$ is the unique solution of the given equations.

Example: -Solve the following system of equations. **OR** Prove that following system of equations is consistent. 2x + 6y = 15; 6x + 20y - 6z = 2; 6y - 18z = 7.

Solution: - Here Augmented matrix is $[A, B] = \begin{bmatrix} 2 & 6 & 0 & 15 \\ 6 & 20 & -6 & 2 \\ 0 & 6 & -18 & 7 \end{bmatrix}$

$$R_{2} \rightarrow R_{2} - 3R_{1} \sim \begin{bmatrix} 2 & 6 & 0 & 15 \\ 0 & 2 & -6 & -43 \\ 0 & 6 & -18 & 7 \end{bmatrix}$$
$$R_{3} \rightarrow R_{3} - 3R_{2} \sim \begin{bmatrix} 2 & 6 & 0 & 15 \\ 0 & 2 & -6 & -43 \\ 0 & 0 & 0 & 129 \end{bmatrix}$$

So, we get r(A, B) = 3 and r(A) = 2

Therefore, $r(A, B) \neq r(A)$

So, the given system is inconsistent. So, we cannot find the solution of given system of equations.

Example: -Solve the following system of equations. **OR** Find the value of μ if following system of equations is consistent. x + 2y + 3z = 14; x + 4y + 7z = 30; $x + y + z = \mu$.

Solution: - Here Augmented matrix is $[A, B] = \begin{bmatrix} 1 & 2 & 3 & 14 \\ 1 & 4 & 7 & 30 \\ 1 & 1 & 1 & \mu \end{bmatrix}$

$$R_{3} \rightarrow R_{3} - R_{1} R_{2} \rightarrow R_{2} - R_{1} \sim \begin{bmatrix} 1 & 2 & 3 & 14 \\ 0 & 2 & 4 & 16 \\ 0 & -1 & -2 & \mu - 14 \end{bmatrix}$$

$$R_{2} \rightarrow \frac{1}{2} R_{2} \sim \begin{bmatrix} 1 & 2 & 3 & 14 \\ 0 & 1 & 2 & 8 \\ 0 & -1 & -2 & \mu - 14 \end{bmatrix} R_{3} \rightarrow R_{3} + R_{2} \sim \begin{bmatrix} 1 & 2 & 3 & 14 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 0 & \mu - 6 \end{bmatrix}$$

If $\mu \neq 6$ then r(A, B) = 3 and r(A) = 2

i.e. $r(A, B) \neq r(A)$ and system is inconsistent.

While if $\mu = 6$ then (A, B) =r(A) =2<3.

So, the system will be consistent and have infinite solutions.

Also,
$$x + 2y + 3z = 14;$$

 $y + 2z = 8 \Rightarrow y = 8 - 2z$ and x = -2 + z

So if $\mu = 6$ then only the given system is consistent and solution is

 $(-2 + k, 8 - 2k, k)/k \in \mathbb{R}$ = {(-2, 8, 0) + k(1, -2, 1)/k $\in \mathbb{R}$ }

