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Sem-III 

MAT 202: Linear Algebra-I 

Unit-1 Vector space 

 

Definition:-  Vector space: 

 

    Let V be a set on which addition and scalar multiplication are defined 

(this means that if u and v are objects in V and c is a scalar then we’ve 

defined  and cu in some way).  If the following axioms are true for all 

objects u, v, and w in V and all scalars c and k then V is called a vector 

space and the objects in V are called vectors. 

(a) u + v  is in V  This is called closed under addition. 

(b) cu is in V  This is called closed under scalar multiplication. 

(c) u + v   = v + u   

(d)    u +( v + w ) = (u +  v) + w   

(e) There is a special object in V, denoted 0 and called the zero vector, 

such that for all u in V we have u + 0 = 0 + u = u  

 
(f) For every u in V there is another object in V, denoted -u  and called 

the negative of u, such that u – u = u +(-u) = 0 . 

(g) c (u +  v) = cu + cv    

(h) (c + k) u = cu + ku  

(i) c (ku) = (ck)u  

(j) 1u = u  

 

Remark: A complex vector space is defined as above by using complex 

numbers instead of real numbers. 

 

Theorem:-  Suppose that V is a vector space, u is a vector in V and   is 

any scalar.  Then, 

(a)  0u = 0  

(b)   0 = 0  

(c)  (-1u) =-u  

 

Proof :  
(a)  0u=(0 +0)u = 0u +0u 

 Adding –(0u) to both sides, we get 

0u +(-0u) = 0u +0u +(-0u) 

     0 = 0u + 0      (0 is  Additive  identity)  

    0 = 0u 

 

(b)  0 =  (0+0)    (0 is Additive identity)  

        =  0+  0  
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 Adding –( 0) to both sides, we get 

0 = – ( 0) + ( 0+  0) 

      = (– ( 0) + ( 0))+  0            ( Associative law)  

      =  0 +  0                                  (– ( 0)  is Additive inverse) 

      =  0                                          (0 is Additive identity)  

 

 

 

(c) In this case if we can show that  u+ (-1)u = 0  then from axiom (f) we’ll  

know that (-1)u  is the negative of u, or in other words that(-1)u = -u .  

u+ (-1)u = 1. u+ (-1)u                (1 is multiplicative  identity)  

   =  (1 + -1) u                ( -1 is Additive inverse of 1)  

     = 0u 

     = 0  

So by uniqueness of  the negative, (-1)u is the negative of u,  i.e. (-1u) = -u  

 

Example:- 

 

Definition:- Sub spaces:- 

 

Let S be a non empty subset of a vector space V. S is said to be a subspace 

of V if S is a vector space under the same operations of addition and scalar 

multiplication as in V. 

 

Geometric meaning of vector sub space: 

Question :- Prove that every line through the origin is a subspace of  

V2. 
 

 In Euclidean space V2, take any straight line S through the origin O. Any 

point P on this straight line can be considered as a vector  op  of V2 in S. 

the sum of two such vectors OP  andOQ , where P and Q both lie in S. is 

again a vectorOR , where R lies in S. 

 Similarly, a scalar multiplication of any vector in S is again a vector in S. 

 All other axioms are automatically satisfied in S. So S is a vector space 

under the same operations as in V2. Thus S is a subspace of V2. i.e. every 

line through the origin is a subspace of V2. 

  Same way, in V3 we can find that any plane S through the origin is a 

subspace of  V3. Also every line L through the origin is a subspace of V3.  

 

Theorem:- A non empty subset S of a vector space V is a subspace of V  

iff the following conditions are satisfied: 

(a) If u,vS then u+vS. 

(b) If uS and  a scalar, then  uS. 

(OR) 

A subset S of a vector space V is a subspace of V iff it is closed under 

addition and scalar multiplication defined in V.  
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Proof: Let S be subspace of V is given. 

  We shall prove that condition (a) and (b) hold in S. 

  Since S is subspace of V. 

 it is closed under addition and scalar multiplication defined in V.  

(It is a vector space itself.) 

Hence the result. 

 

Conversely, 

Let S is closed under addition and scalar multiplication is given. 

We shall prove that S is a vector sub space of V. 

(I) Since S is closed under scalar multiplication is given. 
    SuVSu  )1(1,  

      Su  

[ VuuVanduSu  ))(1( ] 

Thus additive inverse of each element of S exists. 

 

(II) Since S is closed under vector addition is given. 
SuuSuSu  )(,  

    ]0)([ VuuSuSu   

    S 0  
Thus 0 is the additive identity of S. 

(III) Since elements of S are elements of V, 

       vector addition is commutative and associative in S. 

       Thus, S is an abelian group under vector addition. 

 Further S is closed under scalar vector multiplication and             

therefore, the remaining properties of vector space also hold in S 

because they hold in V. 

 

Example:-   

  

 Let L be the set of all vectors of the form  xxxx ,3,2,   in V4. Then L  

is a subspace of V4. 

Sol
n
:- 

 Let   xxxxu ,3,2,    and  yyyyv ,3,2,  . 

 Here Lvu , . 

Now, 
    yyyyxxxxvu ,3,2,,3,2,   

     yxyxyxyx  ,3,2,  

   .,3,2, Lzzzz   

    Where z=x + y. 

.Lvu   
Similarly if R  then 

 xxxxu ,3,2,   

          .,3,2, Lxxxx    

.Lu  
Hence L is subspace of V4.  
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Example:-   
 

The set S of all polynomials P þ , which vanishes at a fixed point 

x0, is a subspace of þ. 
 

Sol
n
:- 

           We have   }.0x /Pþ{ 0  pS  

 Let p,qS. such that P(x0)=0 and q(x0)=0. 

Now, 

          ( p+q )(x0) = p(x0) + q(x0) = 0. 
  .Sqp   

i.e. The polynomial p+q also vanished at x0. 

So, addition is closed in S. 

Similarly, if R  and SP  then  
        .0000   xpxp  

Sp . 

So scalar multiplication in S. 

 S is subspace of þ. 
 

Note :- 

 

 The set containing just the zero element of and nothing else is a 

subspace of V. i.e.{0} is subspace of V. 

 Also vector space V is itself subspace. 

 Subspace {0} and V of V are called trivial subspaces of V and all 

other subspaces of v are called nontrivial subspaces of V. 

 The trivial subspace {0} of V is denoted by V0 and is also called the 

zero subspace of V. 

 

 

Example:-   Prove that s=     }.../...{ .,3,2,1.,3,2,1 nnn Vxxxxxxxx  is vector subspace  

                    of  Vn           (OR) 

 Prove that the equation 0...2211  nnxxx   ---(1) where si

,
   

        are real constants and sxi

,  are real unknowns is vector subspace of  Vn 

 

Sol
n
:- 

A solution of this equation can be represented as an n-tuple 

 .,3,2,1 ... nxxxx  which is a vector of Vn. 

Let s be the set of all vector   nn Vxxxx .,3,2,1 ...  

i.e. s=     }.../...{ .,3,2,1.,3,2,1 nnn Vxxxxxxxx   which satisfy the equation (1). 

  S is a subspace of Vn.  

Because   

 Let Syx ,  such that 

 nxxxx ...,,2,1          nyyyy ...,,2,1  then 

 nn yxyxyxyx  ,..., 2211  
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 Which is also solution of equation (1). 
 Syx   

Similarly R  

Sx  
 S is a subspace of Vn. 

 

Note :-  

 

 The set S of vectors (x, y) V2 which satisfy the equation 

0 yx   is clearly a straight line through the origin in V2.                                                                        

 S is subspace of V2. 

 In V3 the set of all vectors  (x, y, z) V3  ,which satisfy the equation  

0 zyx    is a plane through the origin and hence a subspace of 

V3.  But in V3 we consider the set S of all vectors (x,y,z) which 

satisfy the equation 1 zyx   is a plane, but it does not contain 

the vector(0,0,0).So It is not a subspace. 

                       Problem set 3.2 

Example:1 Prove that a subset W of a vector space V is subspace of V iff     

               Wyx    R ,  and  Wyx  , . 

Solution:- Let us suppose that  W is a subspace of V. 

 We have to prove that Wyx     R ,  and  Wyx  , . 

 Since W is a subspace of V. 

 Wx   R  and  Wx . 

 Also  Wy   R  and  Wy . 

 Since W is closed under scalar multiplication. 

 Hence, Wyx     R ,  and  Wyx  , . 

Convesely,  

 Let Wyx     R ,  and  Wyx  ,  is given. 

 Now we want to prove that W is a subspace of V. 

 Let us take  1  and 1  then  Wyx   

 Let us take  0  then WxWyx   0  

 Hence W is a subspace of V. 
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Span of a Set 

Definition:- Linear combination:- 

Let u1, u2, …,un be n vectors of a vector space V and  n ,,, 21   be 

n scalars. Then  nnuuu   2211  is called a linear combination of  

u1, u2, …,un. 

It is also called a linear combination of the set { u1, u2, …,un } 

If a linear combination of a finite set then it is also called a finite 

linear combination. 

Definition:- Span of a set:- 

The span of a subset S of a vector space V is the set of all finite 

linear combination of S.  

( OR)                                                                                                

If S is a subset of V, the span of S is the set 

{ NnniSuRuuu iinn  ,1,,/2211   } 

The span of S is denoted by [S]. 

If S contains only a finite number of elements, say u1, u2, …,un , then 

[S] is also written as [u1, u2, …,un]. 

e.g. Let us take V = V3 and  S = { (1,0,0) , (0,1,0) } then the linear 

combination of set S as )0,,()0,1,0()0,0,1(    

The set of all such linear combination is [s]. i.e. span of set S. 

i.e. [s] = { R ,/)0,,( }  or [S] = [(1,0,0) , (0,1,0)] 

Theorem:- Let S be a nonempty subset of a vector space V, then prove  

  that [s] is a subspace of V.      

 [OR]        

Let S be a nonempty subset of a vector space V, then prove that the 

span of S is a subspace of V. 

 

Proof:-  We have to prove that [S] is a subspace of V. 

For this,  

Let u, v[S] such that    

u = nnuuu   2211   and v = mmvvv   2211  

For some scalars i  and i  and Ssvsu ii ','      Nn      

 vu nnuuu   2211  + mmvvv   2211  
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Here u1, u2, …,un ,v1, v2, …,vm S and  n ,,, 21  , m ,,, 21  are  

scalars. 

][Svu      __________(i) 

Similarly,  

  

 u = nn uuu )()()( 2211      is again a finite linear 

combination of S. 

][Su    _______________(ii) 

 From (i) and (ii) 

[S] is a subspace of V. 

 

Note:- A nontrivial subspace always contains an infinite number of  

elements. So [S] ( 0V ) always contains an infinite numbers. But S 

itself may be a smaller set, even a finite set. By convention we take 

[ ] = 0V  

 

Theorem:-  If S is a nonempty subset of a vector space, then prove that  

[S] is the smallest subspace of V containing S. 

Proof:- We know that [S] is a subspace of V. 

 Since s[S] 

 Because each elements u0 of S can be written as 1.u0. 

 i.e. 1.u0 [S] 

 now we want to prove that [S] is the smallest subspace containing S. 

 For this, 

 We shall show that if there exist another subspace T containing S,  

then T contains [S] also. 

Let a subspace T contain S. 

i.e. ST. 

Let us take any element u[S] 

Where u = nnuuu   2211    

For some scalars i  and Ssui '      Nn     

since ST. 

 u1, u2, …,un  T 

Since T is a subspace. 

 nnuuu   2211 T 

i.e. uT 

 [S] T 

This prove that [S] is the smallest subspace of V containing S. 

 

Example:- In V2 show that (3, 7) belongs to [(1, 2), (0, 1)] but does not  

belongs to [(1, 2), (2, 4)]. 

Solution:- (3, 7)  [(1, 2), (0, 1)]  

if (3, 7) is linear combination of (1, 2) and (0, 1) . 

i.e.  ,  be scalars such that  (3, 7) = (1, 2) +  (0, 1) 

   = 3 and 2  +   = 7 

Solving these equation then we get 
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   = 3 and    = 1 

Thus, (3, 7) =3 (1, 2) +1. (0, 1) 

Hence (3, 7)  [(1, 2), (0, 1)] 

 

Now, if (3, 7)  [(1, 2), (2, 4)]   

if (3, 7) is linear combination of (1, 2) and (2, 4) . 

i.e.  ,  be scalars such that  (3, 7) = (1, 2) +  (2, 4) 

   + 2  = 3 and 2  + 4   = 7 

But these equation  can not hold at same time 

Becuse  2 + 4 = 6  

 2  + 4  = 7 

This is not possible. 

 

  (3, 7)  [(1, 2), (2, 4)]   

 

Example:-In the complex vector space cV2 . Show that (1 + i , 1- i ) belongs  

to [  (1 + i , 1 ), (1, 1- i ) ] 

Solution:-  ,  be scalars such that  (1 + i , 1- i ) = (1 + i , 1 )+  (1, 1- i ) 

  1 + i = (1 + i )+   and 1- i =   +  (1- i ) 

Solving these equation then we get 

   = 1 + i and    = 1- i    

 (1 + i , 1- i )  [  (1 + i , 1 ), (1, 1- i ) ] 

 

Example:- If U and W is subspaces of  V then prove that U  W is  

subspace of V. 

Solution:- We want to prove that U  W is subspace of V. 

 For this, 

 Let u, v  U  W  

 u, v  U and u, v  W 

 Since U and W is subspaces of  V. 

 u + v  U and u + v  W 

 u + v  U   W. 

   Similarly,  

R , u  U   W 

 (because U and W is subspaces of  V   u  U and u  W) 

 U  W is subspace of V. 

 

Note:- (1) If  U1, U2, U3, …,Un are n subspaces of V then their intersection  

       U1  U2  U3…Un is also a subspace of V. 

(2) Let U and W be subspaces of   a vector space V. then their  

     intersection U   W cannot be empty because each contains the   

     zero vector of V. 

Example:- Let W be the set of all vectors (x1, x2, x3,…,xn) of Vn satisfying   

the three equations. 

nnxxxx   332211 = 0   ----------------(1) 

nnxxxx   332211  = 0    ---------------(2) 
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nnxxxx   332211   =  0    ---------------(3) 

Then W = W1W2W3   

Where W1 is the solution set of equation (1) 

 W2 is the solution set of equation (2) 

  W3 is the solution set of equation (3) 

Solution:-  Since each Wi is subspaces. 

  W is subspace of Vn.   

 

Example:- Prove that the union of two subspaces of V need not be a  

subspace of V. 

Solution:- Let us take  U = x-axis and W = Y-axis in V2. 

 Here U and W are subspaces of V2.  

 Here (1, 0) U and (0, 1) W 

So (1, 0) and (0, 1) U  W 

But (1, 0) + (0, 1) =(1, 1) U  W        ( (1, 1) U and (1, 1) W)   

This show that U  W is not subspace of V2.  

Note:- U  W is not general a  subspace. But we know that if S is  

nonempty subset of a vector space V, then [S] is the smallest  

subspace of V containing S. 

  [U  W] is the smallest subspace of V containing U  W. 

Any element of [U  W] is a linear combination of the finite subset  

of U  W. 

i.e. if v [U  W] then  

v = nnuuu   2211  + mmvvv   2211    

Here u1, u2, …,un  U,   v1, v2, …,vm Wand n ,,, 21  , m ,,, 21   

are scalars for n, m N. 

 v can be expressed as  u + v  for u  U and v  W. 

 

 We can say that [U  W]  consists of elements of the form u + v  

u,  U and v  W. 

 

Definition:- Addition of sets:- 
Let A and B be two subsets of a vector space V. As A + B, is the set 

of all vectors the for u + v, uA and v B. 

i.e. A + B = { u + v/ uA and v B} 

 

Example:-  In V2, let A = { (1, 2) ,(0, 1) } and B = { (1, 1) ,(-1, 2), (2, 5) }  

then A + B = { (1, 2) + (1, 1)  , (1, 2) +,(-1, 2),  (1, 2) +(2, 5) ,  

(0, 1) + (1, 1), (0, 1) +,(-1, 2), (0, 1) +(2, 5)   } 

  = { (2, 3) , (0, 4), (3, 7), (1, 2), (-1, 3), (2, 6)} 

 

Example:-  In V2, let A = { (2,3)} and B = { t(3, 1)/t a scalar } then  

A + B = {(2,3) + t(3, 1) / t is scalar} 

 =  {(2+3t, 3+ t) / t is scalar} 
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Geometric meaning of addition of sets:- 

In V2, let A = { (2,3)} and B = { t(3, 1)/t a scalar } then  

A + B = {(2,3) + t(3, 1) / t is scalar} 

 =  {(2+3t, 3+ t) / t is scalar} 

Geometric meaning of addition of sets A and B as under 

B is a line through the origin and A is a set containing one vector. 

A + B is line parallel to B and passing through the point (2,3) 

 

 
 

 

Example:-  In V3, let A = {  (1, 2,0)/   is a scalar} and  

B ={  (0, 1,2)/   a scalar } then  

A + B = { (1, 2,0)+  (0, 1,2) /  ,  is scalar} 

   =  {( ,2 + , 2  ) / ,   is scalar} 

Geometric meaning of addition of sets A and B as under 

A and B are lines through the origin In V3 and A + B is  plane  

containing these lines and  and passing through the point origin. 
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Theorem:- Let U and W are two subspaces of   a vector space V then  

prove that U +W is subspace of V and U +W =[ U W]. 

Proof:- Since each vector of U +W is a finite linear combination of U  W 

  U+ W  [U  W]  -----------(i) 

 Now we want to prove that  

  [U  W]  U+ W 

 For this, 

  Let v  [U  W] 

   v = u + w     where uU and wW. 

   ( Definition of addition of sets) 

   v U +W 

   [U  W]  U+ W   ------------(ii) 

  From (i) and (ii)  

  U +W =[ U W]. 

 Since [ U W]. is subspace of V. 

   U +W is subspace of V. 

 

Note:-  U +W is the smallest subspace of V containing U  W. i.e. both U  

and W. 

 

Example:- In V3, U = x-axis and W = Y-axis, then find U +W. 

Solution:- U +W is the set of all those vectors of V3 that are from  

 (1, 0,0)+  (0, 1,0) 

 U +W = {( ,  ,0) / ,  are scalars} 

And [U  W] = { u+ w / ,   is scalar and uU and wW} 

i.e. [U  W] = { (1, 0,0)+  (0, 1,0)/  ,  are scalars } 

       U +W =[U  W] 

 

Note:- the interesting relation arising from this example: 

 [x-axis   Y-axis] = x-axis +  Y-axis = xy plane. 

 

 

 

 

 

Direct sum 

 

Definition:- Direct sum:-  
 Let U and W are subspaces of   a vector space V, then the sum  

U +W is called direct sum if the sum U +W is subspace of V and  

U W = v0 ={0}. 

 

It is denoted by U  W. 

i.e. the direct sum of U and W is written as U  W. 
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Example:-  Check the following additions in V3. 

(1) xy plane + z –axis = V3. 

(2) xy plane + yz plane = V3. 

 

Solution:- (1) xy plane + z –axis = V3 is the direct sum  

because xy plane   z –axis ={0}. 

(2) xy plane + yz plane = V3. is  not the direct sum  

because xy plane   yz plane   {0}. 

Note:-  From example (1)Any vector  (a, b, c ) V3 can be written as 

 (a, b, c ) = (a, b, 0 ) + (0, 0, c ) -----------(*) 

  Where (a, b, 0 ) xy plane and (0, 0, c ) z axis 

Thus (a, b, c ) is the sum of two vectors one in the xy plane and the 

other is in  z –axis . 

The advantage of the direct sum lies in the fact that the 

representation equation (*) is unique. 

i.e. we cannot find two other vectors such that one in the  xy- plane 

and the other is in  z –axis . 

On other hand, in example (2) any vector (a, b, c ) can be written as 

the sum of two vectors, one in the xy-plane and other in the yz-plane 

in more than one way. 

e.g. (a, b, c ) = (a, b, 0 ) + (0, 0, c ) 

       (a, b, c ) = (a, 0, 0 ) + (0, b, c ) 

 

Theorem:- Let U and W are two subspaces of   a vector space V and  

Z= U +W then Z= U W iff the following condition is satisfied 

Any vector zZ can be expressed uniquely as the sum 

 z= u +w    for some u U, w W. 

Proof:- Let Z= U W 

 Since Z= U +W 

 If any vector zZ can be written as z= u +w  for some uU, wW. 

 Let us suppose that z= u’ +w’  for some u’U, w’W is another  

representation of z. 

Then  u’ +w’  = u +w   

 u - u’ = w’- w 

But U and W are subspaces of   a vector space V. 

u - u’U  and  w’- wW 

u - u’U   W 

Since U   W is direct sum 

U   W ={0} 

  u - u’ = 0      u = u’ and w’ = w 

 Any vector zZ can be expressed uniquely as the sum 

 z= u +w    for some u U, w W. 

Conversely, 

Let us suppose that any vector zZ can be expressed uniquely as the 

sum  z= u +w    for some u U, w W. 

 

Now we want to prove that Z is a direct sum of U and W. 
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Since Z= U +W is given. 

So we have only to prove that U   W ={0} 

Let us suppose that U   W  {0} 

i.e. U   W  contain nonzero vector v. 

i.e. v U   W  where v 0 

 v U and v W   

and v = v + 0U+ W   with v U, 0 W. 

also v = 0 + vU+ W   with 0U, v  W. 

Thus, these two ways of expression of vector is not possible in direct 

sum. 

 our supposition is wrong. 

Hence U   W ={0} and Z= U W. 

 

Definition:- Linear variety:- 

If U is a subspace of a vector space V and v a vector of V then {v} or 

v +U is called a translate of U (by v ) or a parallel of U (through v) 

or linear variety. 

 

Here U is called the base space of linear variety and v a leader. 

{v}+ U is not a subspace unless vU. 

e.g. (1)Take the line y = x through the origin in V2.Call it U. Consider the  

point v = (1, 0). 

The translate v + U of U by v is the line y = x-1 through the point  

(1, 0) as in figure. It can also obtained by adding (1, 0) to the vectors 

in y = x. 

 
e.g. (2)Let us take the plane y = 0 in V3 and call it U.  

Consider the point v = (1, 1, 1) V3. 

(1, 1, 1)+ U is the set of all points of V3 given by (1, 1, 1)+ u u U 
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Geometrically  

   It is the plane parallel to y = 0 through the point (1, 1, 1). 

Theorem:- Let U be a subspace of a vector space V and P = v +U be the  

parallel of U through v. Then prove that 

(a) For any w in P, w + U = P.  or  Any vector of P can be taken as a  

leader of P. 

(b) Two vectors v1, v2 V are in the same parallel of U iff 

 v1- v2U. 

Proof:- (a) Let wP 

  Since P = v +U 

   w = v +u1  where  u1U.        

   v = w - u1   

  Let us take z P then z = v +u2  where  u2U . 

   z = (w - u1) + u2 

         = w + (u2 - u1) 

  Here U is subspace of V. 

  (u2 - u1) U 

   Thus every vector z P has the form w + (some vector in U). 

   P   w + U ------ (1) 

  Now we want to prove that  

  w + U P 

  For this, 

  Let  y w + U 

   y = w + u     u U 

  The vector  

      y = w + u      

          = v + u1 + u   

         = v + ( a vector of U ) 

    y u + U = P 

   w + U P   ----------(2) 

  From (1) and (2) 

   

w + U = P 

Proof :- (b)  Let v1, v2 be in the same parallel of U, namely v +U. 

   v1 = v +u1  where  u1U and  v2 = v +u2  where  u2U. 

  Then v1- v2 = (v +u1) – (v +u2) = u1 – u2  

  Here U is subspace of V. 

   u1 – u2U. 

   v1- v2 U. 

Conversely,  

  If  v1- v2 U then v1- v2 = u for some uU. 

  So, v1 = v2 + u   

  v1  v2 + U  

  Also v2 = v2 + 0 

  v2  v2 + U  since 0 U 

   So v1, v2 V are in the same parallel of  v2 + U 
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 Example:- Illustration:- Take V =V3 and  U = yz-plane. 

Solution :- Let v = (1, 1,1) then p = v +U is the parallel given by the set  

   { (1, 1,1) + (0, /),  ,  arbitrary scalars} 

= { (1, 1+  ,1+ ) /  ,  arbitrary scalars} 

 

Part (a) of above theorem say that to describe this set we could take  

instead of (1, 1, 1) .any other vector from p. 

Let us take vectoe (1, 0, 0 ). Which is also in p. 

The theorem say that every vector (1, 1,1) + (0, ),  can be written 

in the form (1, 0,0) + (0, ), ''   for any '',  
'  =1+   and  ' = 1+  

To continue the illustration, both  (1, 1,1) and (1, 0,0) are in P  

Part (b) of the theorem says that whenever the difference of two 

vectors belongs to U, then they both belong to the same parallel and 

conversely. 

  


