Matrices

Definition:- Matrix

Let U and V be vector spaces of dimensions n and m, respectively. Let $B_1 = \{ u_1, u_2, u_3, ..., u_n \}$ and $B_2 = \{ v_1, v_2, v_3, ..., v_m \}$ be ordered bases of U and V respectively. Let T: U \rightarrow V be a linear map defined by $T(u_j) = \alpha_{1i} v_1 + \alpha_{2i} v_2 + \alpha_{3i} uv_3 + ... + \alpha_{mi} v_m$, $j = 1, 2, [\alpha_{1j}]$

3, ..., n so that the coordinate vector of T(u_i) written as a column vector is $\begin{vmatrix} \alpha_{2j} \\ \alpha_{3j} \\ \vdots \end{vmatrix}$

Write the coordinate vectors of $T(u_1)$, $T(u_2)$, ..., $T(u_j)$, ..., $T(u_n)$ successively as column vectors in the form of a rectangular array as follows:

 $\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \dots & \alpha_{2n} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \dots & \alpha_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \alpha_{m3} \dots & \alpha_{mn} \end{bmatrix}$

This rectangular array is called the *matrix* of T relative to the *ordered base* B₁ and B₂, and is denoted by (T: B₁, B₂)= $(\alpha_{ij})_{m \times n}$.

Note:- in this definition α_{ij} is the *i*-th coordinate of T(*uj*) relative to the basis { v₁, v₂, v₃,

 \dots, v_m

 \rightarrow The numbers that constitute a matrix are called is *entries*. Each horizontal line of entries is called a *row*. Each vertical line of entries is called a *column*.

Example: Let a linear transformation T: $V_2 \rightarrow V_3$ be defined by

 $T(x_1, x_2) = (x_1 + x_2, 2x_1 - x_2, 7x_2)$. Find the matrix relative to the standard base. **Solution:** We know that the standard basis of v_2 is $B_1 = \{e_1, e_2\} = \{(1, 0), (0, 1)\}$ and the basis of v₃ is $B_2 = \{f_1, f_2, f_3\} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ $T(e_1) = T(1, 0) = (1+0, 2(1)-0, 7(0)) = (1, 2, 0)$ Now $(1, 2, 0) = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$ $=\alpha_1(1,0,0)+\alpha_2(0,1,0)+\alpha_3(0,0,1)$ $=(\alpha_1,\alpha_2,\alpha_3)$ $\therefore \alpha_1 = 1, \alpha_2 = 2, \alpha_3 = 0$ $(1, 2, 0) = 1f_1 + 2f_2 + 0f_3$ \therefore T(e₁) = 1f₁ + 2f₂ + 0f₃ -----(1) $T(e_2) = T(0, 1) = (0+1, 2(0)-1, 7(1)) = (1, -1, 7)$ Now $(1, -1, 7) = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$ $=\alpha_1(1,0,0)+\alpha_2(0,1,0)+\alpha_2(0,0,1)$ $=(\alpha_1,\alpha_2,\alpha_3)$ $\therefore \alpha_1 = 1, \alpha_2 = -1, \alpha_3 = 7$ $(1, -1, 7) = 1f_1 + (-1)f_2 + 7f_3$ $\therefore T(e_2) = 1f_1 + (-1)f_2 + 7f_3 - \dots - (2)$ From equation (1) and (2)

The require matrix with respect to base B_1 and B_2 is

$$(\mathbf{T}: \mathbf{B}_{1}, \mathbf{B}_{2}) = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 0 & 7 \end{bmatrix}_{3\times 2}$$

Example: Let a linear transformation T: $V_3 \rightarrow V_3$ be defined by

 $T(x_1, x_2, x_3) = (x_1 - x_2 + x_3, 2x_1 - 3x_2 - \frac{1}{2}x_3, x_1 - x_2 - 2x_3)$. Find the matrix relative to the $B_1 = \{e_1, e_2, e_3\}$ and the basis of v_3 is $B_2 = \{(1, 1, 0), (1, 2, 3), (-1, 0, 1)\}$ **Solution:-** Here given basis are as $B_1 = \{e_1, e_2, e_3\} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ and the basis $B_2 = \{f_1, f_2, f_3\} = \{(1, 1, 0), (1, 2, 3), (-1, 0, 1)\}$ Now $T(e_1) = T(1, 0, 0) = (1 - 0 + 0, 2(1) - 0 - 0, 1 - 0 - 0) = (1, 2, 1)$ $T(e_1) = (1, 2, 1) = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$ $=\alpha_1(1,1,0)+\alpha_2(1,2,3)+\alpha_3(-1,0,1)$ $=(\alpha_1+\alpha_2-\alpha_3,\alpha_1+2\alpha_2,3\alpha_2+\alpha_3)$ $\therefore \alpha_1 + \alpha_2 - \alpha_3 = 1, \alpha_1 + 2\alpha_2 = 2, 3\alpha_2 + \alpha_3 = 1$ Solving these equation we get $\alpha_1 = 2, \ \alpha_2 = 0, \ \alpha_3 = 1$ $(1, 2, 1) = 2f_1 + 0f_2 + 1f_3$ \therefore T(e₁) = T(1, 0,0) = 1f₁ + 2f₂ + 0f₃ -----(1) Now $T(e_2) = T(0, 1, 0) = (0 - 1 + 0, 2(0) - 3(1) - 0, 0 - 1 - 0) = (-1, -3, -1)$ $T(e_2) = (-1, -3, -1) = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$ $=\alpha_1(1,1,0)+\alpha_2(1,2,3)+\alpha_2(-1,0,1)$ $=(\alpha_1+\alpha_2-\alpha_3,\alpha_1+2\alpha_2,3\alpha_2+\alpha_3)$ $\therefore \alpha_1 + \alpha_2 - \alpha_3 = -1, \alpha_1 + 2\alpha_2 = -3, 3\alpha_2 + \alpha_3 = -1$ Solving these equation we get $\alpha_1 = 6, \ \alpha_2 = \frac{-3}{2}, \ \alpha_3 = \frac{11}{2}$ $(1, 2, 1) = 6f_1 + \frac{-3}{2}f_2 + \frac{11}{2}f_3$ $\therefore T(e_2) = 6f_1 + \frac{-3}{2}f_2 + \frac{11}{2}f_3 - \dots - (2)$ Now $T(e_3) = T(0, 0, 1) = (0 - 0 + 1, 2(0) - 3(0) - \frac{1}{2}, 0 - 0 - 2) = (1, -\frac{1}{2}, -2)$ $T(e_3) = (1, -\frac{1}{2}, -2) = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$ $=\alpha_1(1,1,0)+\alpha_2(1,2,3)+\alpha_3(-1,0,1)$ $=(\alpha_1+\alpha_2-\alpha_3,\alpha_1+2\alpha_2,3\alpha_2+\alpha_3)$ $\therefore \alpha_1 + \alpha_2 - \alpha_3 = 1, \ \alpha_1 + 2\alpha_2 = -\frac{1}{2}, \ 3\alpha_2 + \alpha_3 = -2$ Solving these equation we get

$$\alpha_{1} = 0, \ \alpha_{2} = \frac{-1}{4}, \ \alpha_{3} = \frac{-3}{4}$$

$$(1, -\frac{1}{2}, -2) = 0f_{1} + \frac{-1}{4}f_{2} + \frac{-3}{4}f_{3}$$

$$\therefore T(e_{2}) = 0f_{1} + \frac{-1}{4}f_{2} + \frac{-3}{4}f_{3} - \dots - (3)$$

From equation (1),(2) and (3) The require matrix with respect to base B_1 and B_2 is

$$(\mathbf{T}: \mathbf{B}_{1}, \mathbf{B}_{2}) = \begin{bmatrix} 2 & 6 & 0 \\ 0 & -\frac{3}{2} & -\frac{1}{4} \\ 1 & \frac{11}{2} & -\frac{3}{4} \end{bmatrix}_{3\times 3}$$

Example: Let a linear transformation T: $V_3 \rightarrow V_2$ be defined by

 $T(e_1) = 2f_1 - f_2,$ $T(e_2) = f_1 + 2f_2 \text{ and}$ $T(e_3) = 0f_1 + 0f_2$ Find the matrix relative to the standard base.

Solution:- Here {e₁, e₂, e₃} and {f₁, f₂} are standard base for V₃ and V₂ respectively. B₁ = {e₁, e₂, e₃} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and the basis B₂= {f₁, f₂} = {(1, 0), (0, 1)} Let (x₁, x₂,x₃) \in V₃ Now T(x₁, x₂,x₃) = T(x₁e₁+ x₂ e₂+x₃ e₃) \therefore T(x₁, x₂,x₃) = x₁T(e₁)+ x₂ T(e₂)+x₃T(e₃) = x₁(2f₁ - f₂) + x₂ (f₁ + 2 f₂) + x₃ (0f₁ + 0 f₂) = (2x₁+ x₂) f₁ + (- x₁ + 2 x₂) f₂ = (2x₁+ x₂) (1, 0) + (- x₁+ 2 x₂) (0, 1) = (2x₁+ x₂, - x₁+ 2 x₂)

 $\therefore \mathbf{T}(x_1, x_2, x_3) = (2x_1 + x_2, -x_1 + 2x_2)$

Now $T(1, 0, 0) = (2, -1) = 2 f_1 + (-1) f_2$ $\therefore T(e_1) = T(1, 0, 0) = 2f_1 + (-1) f_2$ -----(1)

also $T(0, 1, 0) = (1, 2) = 1 f_1 + 2 f_2$ $\therefore T(e_2) = T(0, 1, 0) = 1f_1 + 2 f_2$ -----(2)

And $T(0, 0, 1) = (0, 0) = 0 f_1 + 0 f_2$ $\therefore T(e_3) = T(0, 0, 1) = 0f_1 + 0 f_2$ -----(3)

> From equation (1),(2) and (3) The require matrix with respect to base B₁ and B₂ is (T: B₁, B₂) = $\begin{bmatrix} 2 & 1 & 0 \\ -1 & 2 & 0 \end{bmatrix}_{2\times 3}$

Example: Let a linear transformation T: $V_3 \rightarrow V_2$ be defined by

 $T(e_1) = 2f_1 - f_2,$ $T(e_2) = f_1 + 2f_2 \text{ and}$ $T(e_3) = 0f_1 + 0f_2$ Find the matrix relative to basis $B_1 = \{(1,1,0), (1,0,1), (0,1,1)\}$ and the basis $B_2 = \{f_1, f_2, f_3\} = \{(1, 1), (1, -1)\}.$ tion: AS above example

Solution: AS above example

$$(\mathbf{T}: \mathbf{B}_1, \mathbf{B}_2) = \begin{bmatrix} 2 & \frac{1}{2} & \frac{3}{2} \\ -1 & \frac{3}{2} & -\frac{1}{2} \end{bmatrix}_{2 \times 3}$$

Note: the matrix of T changes when we change the bases.

Example:- Let a linear transformation T: $\mathcal{P}_{3} \rightarrow \mathcal{P}_{2}$ be defined by T($\alpha_{0} + \alpha_{1}x + \alpha_{2}x^{2} + \alpha_{3}x^{3}$) = $\alpha_{3} + (\alpha_{2} + \alpha_{3})x + (\alpha_{0} + \alpha_{1})x^{2}$. Let us calculate the matrix of T relative to the bases B₁ = {1,(x-1),(x-1)²,(x-1)³} and B₂ = {1, x, x²}. Solution:- Now T(1) = T(1+0x+0x^{2}+0x^{3}) = 0+(0+0)x+(1+0)x^{2} = x^{2} T(x-1) = T(-1+1x+0x^{2}+0x^{3}) = 0+(0+0)x+(-1+1)x^{2} = 0 T((x-1)^{2}) = T(1+(-2)x+1x^{2}+0x^{3}) = 0+(1+0)x+(1+-2)x^{2}. = x-x^{2} T((x-1)³) = T(-1+3x+(-3)x^{2}+1x^{3}) = 1+(-3+1)x+(-1+3)x^{2}. = 1 - 2x+2x^{2} Since T(1) = $x^{2} = 0.1 + 0 x + 1x^{2}$ T(x-1) = 0 = 0.1 + 0 x+0.x^{2} T((x-1)²) = $x - x^{2} = 0.1 + 1 x - 1.x^{2}$ T((x-1)³) = 1 - 2x+2x^{2} = 1.1 - 2 x + 2.x^{2} Hence, the matrix of T relative to B₁ and B₂ is (T: B₁, B₂) = $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 1 & 0 & -1 & 2 \end{bmatrix}_{3\times4}$ Example:- Let a linear transformation D: $\mathcal{P}_{3} \rightarrow \mathcal{P}_{2}$ be defined by map D(p) = p'.

T($\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$) = $\alpha_3 + (\alpha_2 + \alpha_3)x + (\alpha_0 + \alpha_1)x^2$. Let us calculate the matrix of D

relative to the bases $B_1 = \{1, x, x^2, x^3\}$ and $B_2 = \{1, x, x^2\}$. Solution:- Since $D(1) = 0 = 0.1 + 0. x + 0.x^2$ $D(x) = 1 = 1.1 + 0 x + 0.x^2$ $D(x^2) = 2 x = 0.1 + 2 x - 0.x^2$ $D(x^3) = 3x^2 = 0.1 + 0. x + 3.x^2$ Hence, the matrix of T relative to B_1 and B_2 is $(T: B_1, B_2) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}_{34}$ Note: $\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}_{n \times n}$ is called identity matrix. and is denoted by *In* (or simply *I*, if n is understood).

The ij-th entry of this matrix is usually denoted by δ_{ij} , where δ_{ij} , called the *Kronecker delta*, is defined by

$$\delta_{ij} = 1$$
, if $i=j$
0, if $i \neq j$

Linear map associated with a matrix:

Note:- Any rectangular array of numbers such as

 $\begin{bmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1j} & \cdots & \beta_{1n} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2j} & \cdots & \beta_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_{i1} & \beta_{i2} & \cdots & \beta_{ij} & \cdots & \beta_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_{m1} & \beta_{m2} & \cdots & \beta_{mj} & \cdots & \beta_{mn} \end{bmatrix}_{m \times n}$ is called m × n matrix. If m = n the matrix is called a

square matrix.

* Two matrices $A = (\alpha_{ij})_{m \times n}$ and $B = (\beta_{ij})_{m \times n}$ are said to be equal if $\alpha_{ij} = \beta_{ij}$ for all *i* and *j*. It is written as A = B.

* A matrix whose entries are all real (complex) numbers is called a real (complex) matrix.

Now we will define a linear map from given matrix .

Example:- If matrix of a linear transformation T with respect to standard bases is

 $\begin{bmatrix} 2 & 3 & -4 \\ 0 & 1 & 2 \end{bmatrix}_{2\times 3} \text{ then find image of } (3, 1, -5) \text{ under T. Also define T.}$ i.e. find T(x, y, z) Solution:- Given matrix is $\begin{bmatrix} 2 & 3 & -4 \\ 0 & 1 & 2 \end{bmatrix}_{2\times 3} \text{ and let } \{e_1, e_2, e_3\} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} \text{ be}$ a basis for V₃. \therefore T: V₃ \rightarrow V₂ is linear map and T(1, 0, 0) = (2, 0) T(0, 1, 0) = (3, 1) T(0, 0, 1) = (-4, 2) \therefore T(3, 1, -5) = T(3e_1 + 1 e_2 - 5 e_3) = 3T(e_1) + 1 T(e_2) - 5 T(e_3) = 3(2, 0) + 1 (3, 1) - 5 (-4, 2) = (29, -9) Now T(x, y, z) = T(x e_1 + y e_2 + z e_3) = x T(e_1) + y T(e_2) + z T(e_3)

$$= x (2, 0) + y (3, 1) + z (-4, 2) = (2x + 3y - 4z, y + 2z)$$

$$\therefore \mathbf{T}(x, y, z) = (2x + 3y - 4z, y + 2z)$$

Example:- find T(-2, 1, 0, 5) if matrix of a linear transformation T with respect to standard bases is

 $\begin{bmatrix} 5 & 2 & 4 & 1 \\ 0 & -1 & 2 & 3 \\ 1 & 2 & -1 & 0 \end{bmatrix}_{3\times 4}$ Also define T. i.e. find T(x, y, z)

Solution:- as above T(-2, 1, 0, 5) = (-3, 14, 0)

Example: If matrix of T with respect to bases B_1 and B_2 is $\begin{vmatrix} -1 & 2 & 1 \\ 1 & 0 & 3 \end{vmatrix}_{2}$

Where $B_1 = \{(1,2,0), (0,-1,0), (1,-1,1)\}$ and $B_1 = \{(1,0), (2,-1)\}$ then define T i.e. find T(x, y, z). Solution:-Given matrix is $\begin{vmatrix} -1 & 2 & 1 \\ 1 & 0 & 3 \end{vmatrix}_{2\times 2}$ let $B_1 = \{u_1, u_2, u_3\} = \{(1, 2, 0), (0, -1, 0), (1, -1, 1)\}$ and $B_1 = \{f_1, f_2\} = \{(1, 0), (2, -1)\}$ \therefore T: V₃ \rightarrow V₂ is linear map and Now $T(u_1) = -1(f_1) + 1(f_2)$ \therefore T(1,2, 0)= -(1, 0) + 1(2,-1)= (1, -1) $T(u_2) = 2(f_1) + 0(f_2)$ \therefore T(0, -1, 0) = 2(1, 0) + 0(2, -1) = (2, 0) $T(u_2) = 1(f_1) + 3(f_2)$ \therefore T(1, -1, 1) = 1(1, 0) + 3(2, -1) = (7, -3) Let $(x, y, z) = \alpha_1(1, 2, 0) + \alpha_2(0, -1, 0) + \alpha_3(1, -1, 1)$ $\therefore (\alpha_1 + \alpha_3, 2\alpha_1 + \alpha_2 - \alpha_3, \alpha_3) = (x, y, z)$ $\therefore \alpha_1 + \alpha_3 = x, \ 2\alpha_1 + \alpha_2 - \alpha_3 = y, \ \alpha_3 = z$ Solving this equations then we get $\alpha_1 = x - z, \quad \alpha_2 = 2x - y - 3z, \quad \alpha_3 = z$ $\therefore T(x, y, z) = \alpha_1 T(1, 2, 0) + \alpha_2 T(0, -1, 0) + \alpha_3 T(1, -1, 1)$ = (x - z) (1, -1) + (2x - y - 3z) (2, 0) + z (7, -3)T(x, y, z) = (5x - 2y, -x - 2z)

Example:- If matrix of T with respect to standard bases B_1 and B_2 is $\begin{bmatrix} 2 & -3 & 4 \\ 1 & 0 & -1 \\ -2 & 1 & 0 \\ 1 & 2 & -2 \end{bmatrix}_{4\times 3}$

then define T i.e. find T(x, y, z).

Solution:-Given matrix is $\begin{vmatrix} 2 & -5 & 4 \\ 1 & 0 & -1 \\ -2 & 1 & 0 \end{vmatrix}$ let $B_1 = \{u_1, u_2, u_3\}$ and $B_2 = \{f_1, f_2, f_3, f_4\}$ standard bases V_3 and V_4 of respectively. \therefore T: V₃ \rightarrow V₄ is linear map and Now $T(u_1) = 2(f_1) + 1(f_2) + (-2)(f_3) + 1(f_4)$ $\therefore T(1,0,0) = 2 (1,0,0,0) + 1 (0,1,0,0) + (-2) (0,0,1,0) + 1(0,0,0,1)$ = (2, 1, -2, 1) \therefore T(u₁)= (2, 1, -2, 1) Now $T(u_2) = -3 (f_1) + 0 (f_2) + 1 (f_3) + 2 (f_4)$ $\therefore T(0, 1, 0) = -3 (1, 0, 0, 0) + 0 (0, 1, 0, 0) + 1 (0, 0, 1, 0) + 2(0, 0, 0, 1)$ =(-3, 0, 1, 2) \therefore T(u₂)= (-3, 0, 1, 2) Now $T(u_3) = 4(f_1) + -1(f_2) + 0(f_3) + -2(f_4)$ $\therefore T(0, 1, 0) = 4 (1, 0, 0, 0) + -1 (0, 1, 0, 0) + 0(0, 0, 1, 0) + -2(0, 0, 0, 1)$ = (4, -1, 0, -2) \therefore T(u₃)= (4, -1, 0, -2) Let $(x, y, z) = \alpha_1(1, 0, 0) + \alpha_2(0, 1, 0) + \alpha_3(0, 0, 1)$ $\therefore (\alpha_1, \alpha_2, \alpha_3) = (x, y, z)$

$$\therefore \alpha_1 = x, \quad \alpha_2 = y, \quad \alpha_3 = z$$

 $\therefore T(x, y, z) = \alpha_1 T(1,0, 0) + \alpha_2 T(0,1, 0) + \alpha_3 T(0,0, 1)$ i.e T(x, y, z) = $\alpha_1 T(u_1) + \alpha_2 T(u_2) + \alpha_3 T(u_3)$ = (x) (2, 1, -2, 1)+ (y) (-3, 0, 1, 2)+ z (4, -1, 0, -2) T(x, y, z) = (2x - 3y + 4z, x - z, -2x + y + 2z, x + 2y - 2z)

- **Note:-** let $\mathcal{M}_{m,n}$ denote the set of all $m \times n$ real matrices. Let U and V be real vector spaces of dimensions n and m, respectively. Let fix ordered bases B₁ for U and B₂ for V. Then the process of determining the matrix of a linear map and the linear map corresponding to a matrix show that the map $\tau: L(U,V) \to \mathcal{M}_{m,n}$ defined by τ (T) =(T: B₁, B₂) is one-one and onto.
 - Here τ (T) =(T:,B₁, B₂) is one-one and onto therefore τ is isomorphism.
 - Here L(U, V) is the set of all linear transformations from U to V.
 - Since each linear map T: $U \rightarrow V$ there exists a unique linear map from U to V.
 - When $U = U_n$ and $V = V_m$ and the bases B_1 and B_2 are standard bases in the spaces, then the matrix associated with T: $U_n \rightarrow V_m$ is called its natural matrix.
 - Here $\tau(0) = 0_{m \times n}$
 - If $\tau: L(U) \to \mathcal{M}_{n,n}$ then $\tau(I) = I_n$ where I is the identity transformation on U and I_n is the n × n identity matrix.

Definition:- Sum of two matrices (of the same order):

Let $A = (\alpha_{ij})_{m \times n}$ and $B = (\beta_{ij})_{m \times n}$ be two matrices. Then the sum A + B is defined as the m × n matrix $(\alpha_{ij} + \beta_{ij})$

i.e. the sum of two matrices (of the same order) is obtained by adding the corresponding entries.

e.g. Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix}$ then $A + B = \begin{bmatrix} 1-1 & 3+2 & 2+1 \\ 0+3 & -1+1 & 1+2 \end{bmatrix} = \begin{bmatrix} 0 & 5 & 3 \\ 3 & 0 & 3 \end{bmatrix}$

Definition:- Scalar multiplication of matrix:

Let $A = (\alpha_{ij})_{m \times n}$ matrix and α be scalar. Then the Scalar multiplication of matrix αA is defined as the m × n matrix $(\alpha \alpha_{ij})$

i.e. The Scalar multiplication of matrix by α is obtained by multiplying each entries by α .

e.g. Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & 1 \end{bmatrix}$$
 and $= 5$ then $\alpha A = 5 \begin{bmatrix} 1 & 3 & 2 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 15 & 10 \\ 0 & -5 & 5 \end{bmatrix}$

Example:- prove that the linear map $\tau: L(U,V) \to \mathcal{M}_{m,n}$ defined by $\tau(T) = (T:B_1, B_2)$ is linear.

Solution:- Let fix ordered bases B_1 for U and B_2 for V. Where $B_1 = \{u_1, u_2, ..., u_n\}$ $B_2 = \{v_1, v_2, ..., v_n\}$. Let T, S \in L(U, V) i.e. T: U \rightarrow V and S: U \rightarrow V be linear map. Then T + S is also linear map. If matrices of T and S relative to B_1 and B_2 are A = $(\alpha_{ij})_m \times n$ and B = $(\beta_{ij})_m \times n$

respectively. Then
$$T(u_j) = \sum_{i=1}^{m} \alpha_{ij} v_i$$
 $(j = 1, 2, 3, ..., n)$
And $S(u_j) = \sum_{i=1}^{m} \beta_{ij} v_i$ $(j = 1, 2, 3, ..., n)$
Here $T(u_j) + S(u_j) = \sum_{i=1}^{m} \alpha_{ij} v_i + \sum_{i=1}^{m} \beta_{ij} v_i (j = 1, 2, 3, ..., n)$
 $= \sum_{i=1}^{m} (\alpha_{ij} + \beta_{ij}) v_i$ $(j = 1, 2, 3, ..., n)$ ------(1)

$$(\mathbf{T} + \mathbf{S}) (u_j) = \sum_{i=1}^{m} (\alpha_{ij} v_i + \beta_{ij} v_i) \quad (j = 1, 2, 3, ..., n)$$
$$= \sum_{i=1}^{m} (\alpha_{ij} + \beta_{ij}) v_i \quad (j = 1, 2, 3, ..., n) -----(2)$$
Erom (1) and (2) we get

$$(T + S) (u_j) = T(u_j) + S(u_j) (j = 1, 2, 3, ..., n)$$

$$\therefore \tau (T + S) = \tau (T) + \tau (S) (j = 1, 2, 3, ..., n) -----(3)$$

Also $T(\alpha u_j) = \sum_{i=1}^m \alpha \alpha_{ij} v_i = \alpha \sum_{i=1}^m \alpha_{ij} v_i = \alpha T(u_j) = (j = 1, 2, 3, ..., n)$ $\therefore (\alpha \tau)(T) = \tau (\alpha T)$ for scalar α .-----(4) From (3) and (4) we get the linear map $\tau : L(U,V) \rightarrow \mathcal{M}_{m,n}$ defined by $\tau (T) = (T; B_1, B_2)$ is linear.

Note: the linear map $\tau: L(U,V) \to \mathcal{M}_{m,n}$ preserves addition and scalar multiplication.

i.e. $\tau (T+S) = \tau (T) + \tau (S)$ for all T, $S \in L(U, V)$ and $(\alpha \tau)(T) = \tau (\alpha T)$ for scalar α .

Theorem: (a)Prove that is a real vector space for the foregoing definitions of addition and scalar multiplication.

(b) prove $\tau: L(U,V) \to \mathcal{M}_{m,n}$ defined by $\tau(T) = (T:B_1, B_2)$ is isomorphism.

Theorem: (Dimension theorem for $\mathcal{M}_{m,n}$)

The dimension on of the vector space $\mathcal{M}_{m,n}$ is mn.

Proof:- Given i and j, define the matrix E_{ij} as the m × n matrix with 1 in the ij-th entry and zero in all other entries.

Let set B of matrices as

$$\begin{split} \mathbf{B} &= \{ \ E_{11}, \dots, E_{1n}, \ E_{21}, \dots, E_{2n}, \dots, \ E_{m1}, \dots, E_{mn}, \} \\ &= \{ \ E_{ij} \in \mathcal{M}_{m,n} \ / \ i = 1, \ 2, \ 3, \ \dots, \ m \ ; \ j = 1, \ 2, \ 3, \ \dots, \ n \} \end{split}$$

Now we want to prove that B is a basis for $\mathcal{M}_{m,n}$

First we will show that B is LI.

We assume that

 $\alpha_{11}E_{11} + \ldots + \alpha_{1n}E_{1n} + \alpha_{21}E_{21} + \ldots + \alpha_{2n}E_{2n} + \ldots + \alpha_{m1}E_{m1} + \ldots + \alpha_{mn}E_{mn} = 0 \ m \times n$ i.e.

	α_{11}	α_{12}	•••	α_{1j}	•••	α_{1n}		0	0	•••	0	•••	0	
	α_{21}	$\alpha_{\scriptscriptstyle 22}$	•••	α_{2j}		α_{2n}		0	0	•••	0	•••	0	
	:	÷	÷	÷	:	:		:	÷	÷	÷	÷	:	
	α_{i1}	α_{i2}		$lpha_{_{ij}}$		$\alpha_{_{in}}$	=	0	0	•••	0	•••	0	
	:	÷	÷	÷	:	:		:	÷	:	÷	:	:	
		α_{m2}						0	0		0	•••	$0 \Big]_{m \times n}$	n
~		0 fam			:									

Hence $\alpha_{ij} = 0$ for all i and j

.