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MAT 202: Linear Algebra-I
Unit-3 Linear transformations

Definition:- Linear transformation :-
Suppose U and V are vector spaces either both real or both complex.
Then the map T: U— V is said to be a linear map (transformation,
operator), if
() T@ui+u)=T (@) +T(uy) forall,u;,u, eU
(i) T(au)=aT(u) forall,uecU and all scalars« .

Note:- A linear map T: U— U is said to be a linear map on U.
Whenever we say T: U— U is a linear map, then U and V shall be taken as
vector spaces over the same field of scalars.

Example:- Prove that the map T: V3— V3 define by T (X3,X2,X3) = (X1,X2,0)
linear map.
Solution:- Let « be any scalar and X, ye V3 where x=(X1, X2, X3) and y = (Y1,Y2,Y3)
SXHY =(Xg, X2, X3) + (Y1,Y2,y3)= (Xt Y1, Xo+ Y2 , X3+ Y3)
And a X=(aXi, a X, a X3)
Now T(x +Yy) = T(X1+ Y1, Xo+ Y2 , X3+ Y3)
= (Xa+ Y1, Xo+ Yo, 0) (1)
(- by definition of T)

Now T(X) + T(y) = T(Xy, X2, X3) + T(Y1,Y2,Y3)
= (Xq, X2, 0) + (y1,¥2,0) (- by definition of T)

= (Xo+ Y1, X+ Y2, 0) (2)
T(aX)=T(aXy, a X2, a X3) = (aXy, a Xz, 0)
=« (Xl,Xg,O) —(3)
aT(X)=a T (X1,X2,X3) = a (X1,X2,0) 4)

From (1) ,(2),(3) and (4)
T: V3— V3 linear map.

Note:- T: V3— V3 define by T (X1, X2, X3) = (X1, X2, 0) is called the projection on
X1X, plane.

Example:- Prove that the map T: Vs;— V, define by T (X1,X2,X3) = (X1 - X2, X1+X3)
linear map.
Solution:- Let « be any scalar and x, ye V3 where Xx=(Xy, Xo, X3) and y = (y1,Y»,Y3)
SX Y =(Xg, Xo, Xa) + (Y1, Yo, Y3)= (Xat Y1, Xo+ Y2, Xa+ Y3)
And o x=(aXi, a X, a X3)
Now T(X +Y) = T(Xy+ Y1, Xo+ Y2 , X3+ Ys3)
= (XoF Y- Xo- Yo, XoF Vit Xzt Ys) (1)
(- by definition of T)

Now T(x) + T(y) = T(Xy, X2, X3) + T(Y1,Y2,Y3)
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= (Xp- Xp, Xp+X3) + (Y1-Y2, Y1t+Ys) (- by definition of T)

= (X1 Y1- Xom Yo, Xg+ Y1+ Xa+ Y3) (2)
T(aX)=T(aXy, a X, a X3) = (aXi-a X, aXita X3)
=« (Xl - Xo, X1+X3) —(3)
aT(X)=a T (X1,X2,X3) = a (X1 - X2, X1+X3) (4)

From (1) ,(2),(3) and (4)
T: V3— V, linear map.

Example:- Examine the map T: V3;— Vi define by T (X3,X2,X3) = (¢ + X2 + X )
linear map or not.
Solution:- Let « be any scalar and X, ye V3 where x=(X1, X2, X3) and y = (Y1,Y2,Y3)
X+ Y =Xy, X2, X3) + (Y1, Y, Y3)= (Xa+ Ya, Xo+ Y2, Xa+ Y3)
And a X=(aXi, a X, a X3)
Now T(X +Y) = T(X:+ Vs, Xo+ Y2, .X3+ZY3) ,
= ((Xg+ Y1) + (Xo+ ¥2)* + (Xt Y3)) (1)
(- by definition of T)

Now T(x) + T(y) = T(X1, X2, X3) + T(Y1,Y2,Y3)
=(2+x+x2 )+ (y2+y2+y2) (- by definition of T)

@)

From (1) and (2)
S TX+Y) 2T(X) + T(y)
T: V3— Vyisnot linear map.

Example:- Prove that the map T: U— V define by T (u) = 0, linear map.
Solution:- Let « be any scalar and x, yeU

Now T(x +y) =0, I ¢ )
(- by definition of T)
Now T(x) + T(y)=0,+0, =0, (- by definition of T)
(2)
T(ax)=0, (3
aT(X)=a 0,=0, 4)

From (1) ,(2),(3) and (4)
T: V3— V, linear map.
Note:-the map T: U— V define by T (u) =0, is called zero map.

Example:- Prove that the map T: U— U define by T (u) = u linear map.
Solution:- Let « be any scalar and x,yeU

Now T(x +y)=x+Yy (1)
(- by definition of T)
Now T(X) + T(y) =x+y (- by definition of T)
()
T( o X): aX (3)
aT(X)=a X= aX (4)

From (1) ,(2),(3) and (4)
T: U— U linear map.
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Note:- the map T: U— U define by T (u) =u is called identity map.

Example:- Prove that the map T: V,— V; define by T (X1,X2) = (X1, - X2)

linear map.
Solution:- Let o« be any scalar and X, ye V, where x=(X1, X) and y = (y1,Y2)

X FY =Xy, X)) + (Ya, Y2)= (Xt Y, Xot Y2 )

And a X=(aXi, a X)

Now T(x +Y) = T(Xy+ Yy, Xot V2)

= (Xa+ Y1, - X2~ Y2) (1)
(- by definition of T)

Now T(x) + T(y) = T(Xs, X2) + T(Y1,Y2)
= (X1- X2) + (yi-y2) (- by definition of T)

= (X1+ Y1, - Xo- Y2) (2)
T(aX)=T(aXy, a X2)  =(aX-a X)
= «a (Xl, - X2) —(3)
aTX)=a T (X1,X2) = a (X1 - X2) (4)

From (1) ,(2),(3) and (4)
T: V,— V, linear map.

Note:- the map T: V,— V, define by T (X1,X2) = (X1, - X2) is called the reflection
in the x;-axis.

Figure
Example:- Prove that the map D: GP(a,b) > GY(a,b) defineby D (f) =f’

linear map. Where is the derivative of f.
Solution:- Let « be any scalar and f, ge G(a,b)

Now T(f+qg)=(f+qg)’

=f'+qg’ (1)
(- by definition of T)
Now T(f)+T(g)=f'+g’ (2)
(- by definition of T)
T(af)=(af) =a(f) __ (3)
aT(f)=a(f) (4)

From (1) ,(2),(3) and (4)
D: cP(a,b)— ¢¥(a,b) linear map.
b
Example:- Prove that the map D: G"(ab)—» R define by J (f) = [ f (x)dx

linear map.
Solution:- Let o be any scalar and f, ge G%(a,b)



Now T(f+ g) = T(f (x) + g(x))dx

= j.f(x)dx +j.g(x)dx (1)
(- by definition of T)
Now T(f) + T(g) = [ f(x)dx +[g(x)dx (2)
a a (- by definition of T)
T(af)= ,T“f (X)dx =« _T f (x)dx (3)
aT({f) =a jb‘ f (x)dx 4)

Hmnﬂ)@ﬂ$amu®
Y(a,b)— R linear map.

Example:- Prove that the map T: U— U define by T (x) = x + U, is not linear
map. Where ug is a fixed vector in U.
Solution:- Let « be any scalar and x, yeU

Now T(X +y) =X+ Yy + Ug (¢D)
(- by definition of T)
Now T(X) + T(y) =x+ug+Yy + Ug (- by definition of T)
)

From (1) and (2)
ST +y) 2T(X) + T(y)
T: U— U is not linear map.
Note:- themap T: U— U define by T (x) = x + U, is called translation by the
vector ug .Where uy is a fixed vector in U.
e The function f: R— R defined by f(x) =x + a (‘a’ fixed) is called a linear
function, because its graph in xy-plane is straight line. But it is not a linear map
from the vector space V; to itself.

Theorem:- let T: U— V be a linear map, then
(@ T(0.,)=0,
(b)  T(-u)=-T(u)
() T(eUita,Urta, Ust ... +a,Up)
=a, T(U)+a, T(Up)+a, T(uz)t ...+, T(Up).
I.e. A linear map T transforms the zero vector of U into the zero vector of V and
negative of every u of U into the negative of T(u) of V.
Proof:- (a) T(0,) =T(0.u) [- 0.u=0,ueU]
=0T(u) [ Tis linear]
:OV
(b) T(-u)=T(-1.u) [ (-1).u=-u,ueU]
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= (-1)T(u) [-- Tis linear]
=-T(u)
(c) This result can be proved by mathematical induction.
Let p(n): T(e, U1+ a,Usta, Ust ...+, Uy)
=a, T(U)*a, T(U)+a, T(uz)t ...+, T(Up).

Then p(1): T(e,Up) = o, T(uy)
Since T is linear this is obviously true.
So the result is true for n =1.
Assume that p(k) to be true

1.e. p(K): T(e Uit a,Upt e, Ust ...+, Uy)
=a, T(Up)+a, T(U)+a, T(Us)* ...+, T(Uk). IS true.
We try to establish the result forn =k + 1
T( a, Uit a,Usxta; Ust ... .+0{k+1uk+1)
=a, T(Up)+a, T(U)+a, T(Uz)* ...+ e, T(Uksr).
By the hypothesis and linearity of T.
Since (i) p(1) is true.

(ii) p(k) = p(k+1)
The result is true for all n.

Theorem:- A linear transformation T is completely determined by the values of elements of
a basis. Precisely, if B={u,u,,...,u,} is a basis for U and vy,vs,...,v, be n vectors
( not necessarily distinct) in V, then there exists a unique linear transformation
T:U —V such that T(u;) = v; for i=1,2,...,n.

Proof:- LetueU . since B={ uy,u,,...,un} is a basis for U ,any vector u in U can be written as
a unique linear combination of basis elements. Hence there exist scalars «,,«,,...,,
satisfying
U=, Uit o, Uxt...ta, Up.
We define mapping T: UV by T(U)= o, Vit a,Vot+...Fa, V,.
We prove the following facts:
(i) T is linear transformation.
(i) T(u) =v
(iif) Such mapping T is unique.

Proof of (i):- Let u,veU . Then there are scalars «,,«,,...,a, and B, 4,,..., 3, for
which
U=, Uit a,Ust...ta, Uy
V=g Ut B, Upt...+ S, Un.
U+V=(+2) Ut(a,+B,) Urt...F(a, +B3,) Un
By definition of T
T(u) = o, Vit a,Vot...ta, V.
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T(V)= B Vit B, Vot...+ B Vp.
T(U+V)= (o + B) Vit (e, + B,) Vot... (e, + B,) Vi
It is clear that
T(u+v)=T(u) +T(V)
Also we can easily show that
T(au)= aT(u)
For every scalar « and every vector ue U. This establishes that T is a
linear transformation from U to V.

(i) Now u; €B, i=1,2,....n
So, u; can be expressed in terms B as u; =0.u; + 0.u, + O.us + ... +0.u,
T(Ui) =0.v; +0.v, + 0.v3 + .... +0.v,
=v;,1i=1,2,3,...,n
(iii) Let S: U—V be any other linear transformation define by
S(Ui) =V =1,2,3,...,n
Now S(u) = S(e, Ut a, Ust... e, Uy)
= o, S(Up)+a, S(Up)+a, S(Uz)+ ...+, S(Uy).
= oy, Vita,Vot.. .t a,Vy
=T(u).
- S(u) = T(u).
This proved that such mapping T is unique.

Example:- If T is a linear transformation from V,— V, define by
T(2,1)=(34)
T(-3,4)=(05)
then express (0, 1) as a linear combination of (2, 1) and (-3, 4). Hence find image of
(0, 1) under T.

Solution:- Let(0,1) =« (2,1) +5 (-3, 4)
~(Qa-3p, a+45)=(0, 1)
2a-38=0, a+4p=1

Solving these equation then we get o= = ,B—

(0, 1) :ﬁ 2, 1) +ﬁ (-3, 4).

T, 1)=T(2 2,1)+2 (:3,4)
ilT(z 1) + —T(—3, 4)
_ _ 1
_ E (3 4) +ﬁ(0'5) =022

Thus we get T(0, 1) = % (9 22)

Example:- If T is a linear transformation from R®— R® define by
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T (e)) =e, te, +e3,T (e;) =€, + €3 and T(es) = e, — e3 where e, e, , ez are unit
vector of R® . Then (i)Determine the transformation of (2, -1, 3) And
(if)describe explicitly the linear transformation T.
Solution:- Since e; ,e,, e; are unit vector of R®
-.e:=(1,0,0),e,=(0,1,0),e3=(0,0,1)
We have T (e;) =e; +e, +e3 =T(1,0,0) =(1,0,0) +(0, 1, 0) +(0, 0, 1)

=(1,1,1)
T (e) =€, +e; =T(0,1,0) = (0, 1, 0) +(0, 0, 1)
=(0,1,1)
T(es) =e,— €3 =T(0,0,1) = (0, 1,0) - (0, 0, 1)
=(0,1,-1)

Since e, ,e, , &5 form basis for R®.
-. every vector of R%can be uniquely expressed as a linear combination of e; ,e, , es.

(i) Now (2, -1, 3) = 2(1, 0, 0) +(-1)(0, 1, 0) +3(0, 0, 1) = 2e; +(-1)e, +3e;
~T(2, -1, 3) = 2T(e1)+(-1)T(e)+3T(e3)

=2(1,1,1)+(-1)(0,1,1)+3(0,1,-1)
=(2,4,-2)
(i)  (xy,2)e R%.
Now (x, Yy, z) =x(1,0,0) +y(0, 1, 0)+ z(0, 0, 1) = xe; +ye, +ze3
< T Y, 2) = XT(e1) +yT(ez) +2T(e3)
=x(1,1,1)+y(0,1,1)+z(0,1,-1)
=(X,X+y+2z Xx+y-2)
ST Y, D) =X Xx+y+2Z,x+y—2)
Which is require linear transformation T.

Range and Kernel of a Linear map

Definition:-Kernel of a Linear map (null space)
Let T: U—V be a linear map. The Kernel (null space) of T is the set
N(T) ={ueU/ T(u) =0}
It is denoted as kerT.
OR N(T) is the set of all those elements in U that are mapped by T into the zero of V.

Definition:- Range of a Linear map (null space)
Let T: U—V be a linear map. The range of T is the set

R(T) ={T(u)eV/ueU }.
It is denoted as kerT.

Example:- Let T: V3— V3 be a linear map define by T(X1,X2,X3)= (X1,X2,0) Find N(T) &
R(T) (OR) Find the range and kernel of T.
Solution:- Here ,R(T) = {(x1,X2,0) / X1,X, € R}



R(T) is x1x, plane.
T is not onto.
Since R(T) is a subset of co domain V.
T is not one-one.
Since different vectors (1,0,2) and (1,0,5) have the same image (1,0,0).
N(T) = xz-axis.
Since any vector (0,0, x3) on the xs-axis will be taken onto zero to vector of V3.

Example:- Let T: U—U be an identity linear map then find N(T) & R(T).
(OR) Find the range and kernel of T.
Solution:- Here T: U—U be an identity linear map.
l.e. T(u) =u forueU.
This is one — one and onto linear map.
~R(M)=U and N(T) =0

Example:- Let T: U—U be zero linear map then find N(T) & R(T).
(OR) Find the range and kernel of T.
Solution:- Here T: U—U Dbe zero linear map.
l.e. T(u)=0 forueU.
This is not one — one and onto linear map.
~R(M)=0 and N(T) =U

Example:-Let T: V3— V, be a linear map define by T (X, X2, X3) = (X1 - X2, X1 +X3) then find
N(T) & R(T) (OR) Find the range and kernel of T.
. Solution:- Here T: V53— V, be a linear map define by T (X1,X2,X3) = (X1 - X2, X1+X3)
Let (a, b)eV, such that T (x1,X2,X3) = (a, b)
(Xl - Xo, X1+X3) = (a, b)
S X=X =a, XXy = b
Solving these equation then we get
Xo = X1— 4, X3:b'X1
Hence T (Xy, X1—a, b-Xx,) =(a, b)
~R(M =V, (- every vector (a, b)eV,Iin R(T))
So this is onto map.
Now for kernel of T
T (X1, X2, X3) = (0, 0)
(Xl - Xo, X1+X3) = (0, O)
XX = 0, X1+X3 = 0
Solving these equation then we get
SX1= Xo=-X3
I.e. all vectors of the form (x,X1,-X1) will be mapped into zero.
~ N(T) ={x(1,1,-1) / x,any scalar} = [(1,1,-1)]

Example:- LetT: V,— V; bea linear map define by T (X1, X2) = (X, - X2) then find N(T) &
R(T) (OR) Find the range and kernel of T.

. Solution:- Solution:- Here T: V,— V, be a linear map define by T (X1,X2) = (X, - X2)
Let (a, b)eV; such that T (x1,x2) = (a, b)
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(X1 ) X2) = (a., b)
X]_:a,-ngb
Solving these equation then we get
X1=a, X = -b
Hence T (a,—b) =(a, b)
~R(M) =V, (- every vector (a, b)eV,IinR(T))
So this is onto map.
Now for kernel of T
T (X1, X2) = (0, 0)
- (X1 - %) = (0, 0)
X1=0,X2=0
- N(T)=(0,0)}

Example:- Let the map D: G®(a,b)» G"(a,b) define by D (f) =
linear map. Where is the derivative of f. then find N(T) & R(T). (OR) Find the range
and kernel of T.

Solution:- Since every continuous function g on (a, b) possesses an antiderivative.
hence D is an onto map.
~R(MD) = c%@a,b) .
And N(D) is the set of all constant functions in G®(a,b) .

b
Example:- Let the map D: G®(a,b)— R define by J (f) = jf(x)dxlinear map. Where is the
derivative of f. then find N(T) & R(T). (OR) Find the range and kernel of T.

Solution:- Since every real number can be obtained as the algebraic area under some
curve y =f(x) fromato b.
hence D is an onto map.
~R(D)=R.
And it is difficult to say anything about kernel i.e. N(D).

Note :- From above example we see that if T is one-one when N(T) is the zero subspace and
conversely.

Theorem:- Let T: U—V be a linear map. Then
(@ R(T) is asubspace of V.
(b)  N(T) is subspace of U.
(¢) T isone-one iff N(T) is the zero subspace, {0y}, of U.
(d) If [uguy,...,uy] = U, then [T(uy), T(up),...,T(un)]
(e) If Uis finite- dimensional, then dimR(T) <dimU.
Proof:- (a) we want to prove that R(T) is a subspace of V.
For this, let v;,voe R(T) such that T(u;) = v, and T(u,) = v, for ug,ueU.
Now v+ Vv, =T(uy) + T(up) =T(ug + Up) [-T: U->V be a linear map]
Since U is a vector space .
LU+ uel
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And T: U—V be a linear map
T(U1 + Ug) =Vi+ Voe R(T)
Similarly , avie R(T) then av; = a T(uy) = T(a uy) e R(T).
Thus R(T) is a subspace of V.

(b) we want to prove that N(T) is a subspace of U.
For this, let uy,u,e N(T) such that T(u,) =0, and T(up) =0, for ug,u,eU.
Now T(uy + u,)=T(uy) + T(up) = 0Oy [-T: U=V be a linear map]
oo T(ug+ up) =0,
s Up + Uye N(T)
Similarly , for any scalar « T(a Uy)= a T(uy) =a 0, =0, e N(T).
Salge N(T)
Thus N(T) is a subspace of V.

(c) Suppose T is one-one.
We want to prove that N(T) is the zero subspace, {0y}, of U.
Since T is one-one then T(u) = T(V)=> u=v
If ueN(T) then T(u) =0, = T(0y).
~u=0y
I.e. no nonzero vector u of U can belong to N(T).
Since Oy in any case belongs to N(T).
I.e. N(T) contains only Oy and nothing else.
Hence, N(T) is the zero subspace, {0y}, of U.
Conversely,
Suppose N(T) = {0y}
We want to prove that T is one-one.
I.e. We want to prove that T(u) = T(V)= u=v
suppose T(u) = T(v)
then T(u-v) =T(u) - T(v) =0y.
~u—=v eN(T)= {0y}
S Uu—=v=0g.
le.u=v
I.e. T is one-one.
(d) et [uguy,...,u,]=U
ueU
then u can be expressed as a linear combination of vectors uy,u,,...,u,.
The T(uy),T(uy),...,T(u,) are in R(T).
So [T(uy),T(uy),...,T(u,)]=R(T).
Let veR(T).
Then there exists a vector ue U such that T(u) = v.
Since ueU = [ug,U,,...,u,], we have
U=, Uit o, Ust...ta, U,
V=T(U) =T(a, Uyt a,Ust...t, Up)
= o, T(U)ta, T(Up)+a, T(us)* ...+ a, T(Up).
Sove[ T(uy),T(up),...,T(uy)].
This proves that R(T) = [ T(uy),T(uyp),...,T(uy)].
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(e)  Let U be finite dimensional and dim U = n.
So there can be at most n LI vectors in U.
Let { uy,uUy,...,u} be the basis of U.
Then R(T) =[T(uy),T(up),...,T(u,)]
So that there can’t be more than n LI vectors inR(T).
So dimR(T)=n<dimU.

Definition:- Rank of T:-
Let T: U—V be a linear map. Then If R(T) is finite- dimensional, the dimension
of R(T) (i.e.dimR(T)) is called the rank of T and is denoted by r(T).

Definition:- nullity of T:-
Let T: U—V be a linear map. Then If N(T) is finite- dimensional, the dimension of
N(T) (i.e.dimN(T)) is called the nullity of T and is denoted by n(T).
Rank and Nullity

Theorem:- Let T: U—V be a linear map. Then
(@) If T is one-one and uy,uUs,...,u,. are linearly independent vectors of U, then
T(uy),T(uy),...,T(uy,) are LLI.
(b)If vy,vs,...,v, are linearly independent vectors of R(T) and ug,u,,...,u, are vectors of U
such that T(uy) = vy, T(Up) = vy, ..., T(u,) = v, then ug,Us,...,u,. are linearly independent.
Proof:- (a) Let T is one-one and {uy,u,,...,uy}are linearly independent vectors in U.

We want to prove that T(u;),T(U,),...,T(uy) are LI.
Consider o, T(up)+a, T(Up)+a, T(Us)* ...+, T(uy) =0,
o Tl Uit a,Upt.. .+, up) =0 [-- T is linear map]
Also T(0,) =0,
Since T is one-one is given.
Ut a,Ust.. .+, U= 0y
Since uy,U,,...,u,. are linearly independent vectors of U is given.
L= a,=...=a,=0
Thus T(uy),T(uy),...,T(uy,) are LI.

(b)  Since vy,Vvs,...,v, are linearly independent vectors in V
and T(uy) = vy T(up) =V, ..., T(un) = v, Where uy,U,,...,u,e U is given,
We want to prove that uy,us,...,u,. are linearly independent.
Consider o, Uit a,Uyt...+a, Uy, =0
s T(gUta,Upt.. .+ a,u,) =0, [T is linear map]
oy T(U)+a, T(U)+a, T(ug)t....+a, T(uy) =0,
Since T(uy),T(uyp),...,T(u,) are LI
o= a,=..=a,=0
Hence uy,u,,...,u,. are linearly independent vectors in U.

Theorem:- (Rank and Nullity Theorem):
Let T: U—V be a linear map and U a finite dimensional vector space. Then prove that
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dim R(T) + dim N(T) = dim U.
e r(T)+n(T)=dimU
(or) rank + nullity = dimension of the domain space.
Proof:- N(T) is a subspace of a finite dimensional vector space U. Then N(T) must be finite
dimensional.
Letdim N(T)=n(T)=nanddimU=p.
So, n<p
Let the basis for N(T) be { ug,u,,...,un}.
- { ug,Uy,...,uyare linearly independent vectors in N(T)
~.{ug,Uy,...,up}are linearly independent vectors in U.
Now extend this set of n linearly independent vectors of U to the basis for u.
So we find the vectors Uns1,Unsz, ..., Up
So that the enlarged set { uy,U,...,un , Uns,Unso,...,Up } IS @ basis for U.
Since this set of p vectors generate vector space U.
R(T) :[ T(ul)’T(UZ)a' . .,T(Up)]
ButuieN(T),i=1,2,3,...n.
Hence T(u)=0,,i=1,2,3, ...n.
~R(T) = [T(Un+1), T(Uns2),. .., T(up)]
Now we shall prove that A = { T(Un+1), T(Un+2),. .., T(up)} is basis for R(T).
Since we already proved that R(T) = [T(Un+1), T(Un+2),. .., T(up)]
So we have only prove that A is LI set.
Let us consider a,,, T(Uns1)+ ., T(Uns2)+...+ o, T(Up) =0
=Tl Unsat oy, Unsot. o+ o Up] =0
Since T is linear
Ay Uniit @, Unsot. .+ o U e N(T).
But N(T) has a basis {uy,us,,...,un}
SO ¢, w2 Uneot...+ o Uy Which is the elements of N(T) can be expressed as a
linear combination of basis {uy,Us,...,u,} of N(T).
-.there exists scalars «,,a,,...,a, such that
ApaUnant o Unio .t o Up = o Uit o, Upt.. .+ a, Uy
s Uit a, Ut o, Uy +(-1) ¢, Unsat (-1) @, Unsot. .+ (1) 2 U = 0
Since {uy,u,,...,uy} is a basis for t vector space U this set is LI.

So a,,= a,,,=...= a,=0

n+2
This prove that set A is LI.
o A= L T(Un+1), T(Uns2),..., T(up)} is basis for R(T).
Dim R(T) = number of elements in basis A
=p—n
= dim U - dim N(T)
Hence rank + nullity = dimension of the domain space.

n+2

Up1t «a

n+1

n+2

Example:- Prove that the linear map T : V3— Vs defineby T (e)) =e;-e,, T () =2e,+ e
and T(e3) = e; + e, + ez is neither one-one nor onto.
Solution:- Here R(T) = [T (e1), T (e2) , T(es)]
= [el- e,,2e,+e3,e,+te,+ eg]
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=[ e,-65, 26+ eg]
Since e, + e, + e3 is linear combination of e;- e, , 26, + €3
R(T) has dimension 2.
R(T)= V;3
-. T Is not onto.
Since N(T) consists those vectors (X1, X, , X3)€ Vzsuch that T (xq, X», X3) =0.
l.e T(Xlel"' X2 €2 + X3 eg) =0
<Xy T(er)+ X2 T(e2) + X3 T(e3) =0
SoX1(B1-€) +Xo (282 + €3)t Xz (1t e+ e3) =0
X1+ X=0, X2 X, +X3=0 and Xo+ X3= 0
Solving these equation then we get X; = X, = -X3
- N(T) ={ (X1, X1, -x0)/ Xy an arbitrary scalar}= [(1, 1,-1)].
. N(T) is not the zero subspace of V.
Hence T is not one-one.

Example:- Let linearmap T : V4— V3 defineby T (e;) =(1, 1, 1), T (e2) = (1, -1, 1), T(e3) =
(1, 0,0) and T(es) = (1, 0, 1) then verify that r(T) + n(T) = dim U(=V,) = 4.
Solution:- Here R(T) = [T (e1), T (e2) , T(e3), T(ey)]
~R(M=1(1,1,1), (1,-1,1),(3,0,0), (1,0, 1)]
(1,1,1), (1,-1,1),(1,0,0) (1,0,1)is LD, because a set of four vectors of V3
(dim V3 = 3)is always LD.

Now find that (1, 0, 1) = % 1,1,1) +% (1,-1,1) +0(1, 0, 0)

Hence we discard the vector (1, 0, 1) so that
R(M=1[(@1,1,12), (1,-1,1),(,0,0)]
Now check R(T) is LI.
Let o,,a,,a; €R such that «, (1, 1, 1)+«, (1, -1, 1)+ «,(1,0,0) =0
Ny ta,ta,,o- a,,a,ta,) =0
cota,ta,=0,0- 0,= 0,0+, =0
From above equations we get
a=a,=a,=0
Hence {(1,1,1),(1,-1,1),(2,0,0)}is LI.
~dimR(T) =r(T) =3
Now we find N(T).
Let us suppose that T(u) =0 for ue V, where u = (X, X2, X3 X4),
NOW U = X181+ Xo€oF X383+X4€4
T(U) = T(X1e1+ Xo€r+ X3€3+X4e4) =0
S X T(e1)+ Xo T(@g) + X3 T(e;g) =0
X [(@, 1, 1)+ % (1,-1,1) +x3(1,0,0) ++ %, (2,0,1) =0
S X T Xo+ X+ Xa= 0, X1 - Xo = 0 and + X +Xo+ X,= 0
Solving these equation then we get X; = X, = -X4/2, X3 =0
- N(T) ={ (X1, X1, 0,-2x1)/ x; an arbitrary scalar}= [(1, 1,0,-2)].
~dimN(T) =n(T) =1
Hence r(T) +n(T) =3 +1 =4 =dim U(=V,)
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Inverse of a linear transformation

Definition:- Nonsingular or Isomorphism :
Alinear map T : U— V is said to be nonsingular if it is one — one and onto. Such a
map is also called an isomorphism.

Definition:- Inverse function:
Any function is called inverse function iff it is one — one and onto.

Note: a linear transformation is Nonsingular iff it has an inverse.

Example:- Define a linear map T : V,— V, by T(X1, X2) = (X1, -X2). Prove that this map is
Nonsingular.
Solution:- Here the linear map T : V,— V, define by T(X, Xo) = (X1, -X2)
Now for N(T)
T(Xl , X2) =0
s (Xy, %) =0
~X=0and x, =0
N(T)=0
. This linear map T is one — one.
Now for R(T)
For every (Y1, Y»)eV, then there exists (x;, X») eV, such that
T(X1, X2) = (Y1, Y2)
(X, %) =(Y1, Y2)
X1 = yland X2=Y2
~R(T) =V,
This linear map T is onto
“THYL Y2) = () o).
- it has inverse
- This map is Nonsingular.

Example:- Prove that a linear map T: U— U define by T (u) = u is Nonsingular.
(OR)Prove that an identity linear map is one-one and onto.
(OR) Find the inverse of a linear map T: U— U define by T (u) = u.
Solution:- Here the linear map T : U— U define by T(u) = (u)
Now for N(T)
T(u)=0
~u=0
~N(T)=0
. This linear map T is one — one.
Now for R(T)
For every (y)eU then there exists (u)e U such that
T(u)=(y)
- (u) =(y)
~R(M=U
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This linear map T is onto

=THY) = ()-
- it has inverse
- This map is Nonsingular.

Example:- Prove that a linear map T: 9,— Vs defineby T (a,+ o, X +a,X%) = (o, o, @, )iS
Nonsingular. OR Prove that a linear map T: %,— Vs define by T (o, +a, X +a,X°) =
(e, ,,) IS isomorphism.
Solution:- Here the linear map T : #,— Vs define by T (a,+ o, X +,X%) = (a0, 1, )
Now for N(T)
T (e, + o, X +a2X2) =0
.'.(ao,al,az) =0

La,may=a,=0

~N(T)=0
. This linear map T is one — one.
Now for R(T)

Forevery (A.,5,,5 )e Vs then there exists (4, + 8,x + ,X°) e P, such that
T(p+BX+BX) = (B2 o )
- (B, By, B) Is image of T.
~R(T) = V3
This linear map T is onto
STHBL B B) = (Bt Bx+ 5X0).
- it has inverse

- This map is Nonsingular.

Theorem:- Let T: U— V be nonsingular linear map. Then T*: V— U is a linear, one —
one and onto map.
Proof:- First to prove that T is linear.
Let vq,voe V.
Let T_l(Vl): Up and T_l(Vg) =UuU for Ug,Ure U.
Since T is nonsingular linear map
. T is one — one and onto map.
. u;and u, exists uniquely.
SV = T(Ul) and Vo = T(Ug)
vi+ Vv, =T(u)+ T(uy) =T(ug+uy) [+ Tis linear]
T-l(Vl + V2)= U+ u, = T-l(V]_) + T-l(Vg)
we get TH(vy+ Vo) = TH(vy) + TH(v)
Also aVi1= «o T(U]_) = T(a U]_)
T-l(OC V]_) —al1 = «o T-l(Vl)
ie. T (avi) = aTH(vy)
- T is linear.
Now we want to prove that T is one-one.
Let v;,v,eV such that T (v;) = T™(v,) = u say forueU.
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= Vi =V,=T(u)
Since image of u under T is unique.
V=V
Thuswe get T*(v) =T (V) = vi=V,
-~ T is one-one.
Now we want to prove that T is onto.
Given any element ue U then there exists an element ve V such that
T(u) =v.
- U =THv)
This show that T is onto.
- T':V— U isalinear, one —one and onto map.

Example:- Check that a linear map T: U— U ,where U is vector space, define by
TX) =THX1, X2, X3 Xy ---}) ={ X2, X5, Xn, ...} IS Nonsingular or not. Also
check the inverse of this linear map is exist or not.

Solution:- Here the linear map T : U— U define by
T{X1, X2, X5, Xny o) ={ X2, X3, Xny ---}

Now for N(T)
T(X)=0
S TEX, X2, X5 Xy <o) =0
X2, X3 Xn, ...} =0
Here let x; = z which may not be zero.
~N(T)={2,0,0,0, ...... }
~N(T) 20
. This linear map T is not one — one.
Now for R(T)
For every (Y1,Y2,Ys. . . Yn ... )eU then there exists (z, y1, Y2, Ys... Y ... )eU
such that T({z, y1, Y2, Y35 Yns - ) = (Y1, Y2, Y5, Yy --- )
Lz, Y1,Y2, Y5, Yn, ... Yispreimage of {y1,¥2, Y5 Yn, ... }
~R(M=U
This linear map T is onto
Thus we get T is onto but not one-one.
. This map is not nonsingular.
-.Also T has not inverse.

Example:- Check that a linear map T: U— U ,where U is vector space, define by
TX) =THX1, X2, X3 Xn, ---}) = {0, X1, X2, X3 X, ...} is Nonsingular or not.
Also check the inverse of this linear map is exists or not.
Solution:- Here the linear map T : U— U define by
T{X1, X2, X3, Xn, ... 1) = {0, X1 X2, X3 Xny -}
Now for N(T)
T(Xx)=0
T({Xl, X2, X3, X, }) =0
{O, X1, X2, X3, Xp, } =0
~N(T)={0,0,0,0, ...... }
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~N(T)=0
-. This linear map T is one — one.
Now for R(T)
let (1,1,1 .1,...)eU hasnopreimageinU
~R(T) = U

This linear map T is not onto
Thus we get T is not onto but one-one.
. This map is not nonsingular.
-.Also T has not inverse.

Theorem:- If U and V are finite dimensional vector spaces of the same dimension, then a
linear map T: U— V is one-one iff it is onto.
Proof:- T isone—one < N(T) = {0,}
<n(T) =0
<r(T)=dimU=dimV
[-- By Rank and Nullity Theorem i.e r(T)+ n(T) =dim U]
< T is onto.
Example:- Show that the linear map T : V3 — V; defined by
T(X1, X2, X3) = (X1 + Xo+ X3,X2 +X3, X3) IS nonsingular and find its inverse.
Solution:- Here the linear map T : V3 — V3 defined by T(Xy, Xo, X3) = (Xg + Xo+ X3,X2 +X3, X3)
Now for N(T)
T(X1, Xo, X3) =0
(Xl + Xo+ X3 ,Xp +X3, X3): 0
X1+ X+ X3=0 ,X+X3=0,%X3=0
~X1=0,%=0 and X3=0
N(T)=0
. This linear map T is one — one.
Since the dimension of domain space and dimension of co domain space are equal.
- Tis onto.
Thus we get T is one-one and onto.
Hence T is nonsingular and the inverse of T exists. i.e. T™ exists.
Now we derive the formula for T™.
Let TH(y1, Y2, Ya) = (X¢, Xz, Xa). (1)
(Y1, Y2, Y3) = T(X1, X2, Xa)
S (Y1, Y2 Y3) = (Xo+ Xot X3, X2 +X3, Xa)
Y1 =X+ X+ Xz, Yo = X2 X3, V3= X3
Solving these equation then we get
X1=VY1-Y2, X2 =Yz2-yzand X3 =Y
put the values of Xy, X,, X3 in equation (1) then we get
THY1, Y2 Ya) = (1= Yo, Y2 -Ys ., ¥3)

Example:- Show that the linear map T : V3 — Vs defined by T (e)) =e;+e,, T (e;) =e,+ €3
and T(e3) = e; + e, + ez is nonsingular and find its inverse.

Solution:- First we find the value of T.
Let (X1, Xz, X3) e V3such
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T(Xl , X2, X3) = T(Xlel + X, €1 X3 e3)
=X1 T(el) + X, T (eg) + X3 T(eg)
=X1 (e]_ + e2) + X5 (eg + 63) + X3(81 +e,+ 63)
=X; (1,1,0) + x, (0,1,1) + x3(1,1,1)
[--Where e;=(1,0,0), e,=(0,1,1)and e;= (0,1,1)]
= (X1 + X3, X1+ Xp +X3, Xot X3)
1.e. T(X1, Xo, X3) = (Xy + X3, XpF X +X3, Xot X3)
Now for N(T)
T(X1, Xo, X3) =0
(X]_ + X3, X1+ Xo +X3, Xot+ X3)= 0
X1+ X3 =0, X1+ Xo+ X3 = 0,X2+X3=0,
~X1=0,%=0 and X3=0
N(T)=0
-. This linear map T is one — one.
Since the dimension of domain space and dimension of co domain space are equal.
. T is onto.
Thus we get T is one-one and onto.
Hence T is nonsingular and the inverse of T exists. i.e. T™ exists.
Now we derive the formula for T™.
Let TH(y1, Y2, Ya) = (Xe, Xz, Xa). B Y
(Y1, Y2, Y3) = T(X1, X2, Xa)
S (Y1, Y2, Y3) = (Xe+ X3, Xa+ X2 +X3, Xot X3)
SY1= Xt Xz, Yo = Xp+ Xp X3, V3= Xot X3
Solving these equation then we get
X1=Y2—Y3 X2 =Y2-Yiand Xs=Yyi—Yo+Ys
put the values of X, X,, X3 in equation (1) then we get

TV Y2, ¥2) = (V2= Y3, Y21, Y= Y2+ Ya)
Consequences of rank nullity theorem

Definition:-1somorphic:-
Two vector spaces U and V are said to be isomorphic if there exists an isomorphism
fromU to V.
If U and V are isomorphic then we write U = V.

Theorem:- Every real (complex) vector space of dimension p is isomorphic to Vy(V,)

Proof:- Let U be a real vector space of dimension p.
Let B ={u;, u,, us__ Uy} an ordered basis for U.
LetueU
U= agUita,Urt.. .o, Up
I.e uis linear combination of set B.
-. the coordinate vector of U relativetoBis{«,,a,,...,
Now define a mapping T: U— V, by T(u) = (o, a5,
We want to prove that T is linear map.
Letu, veU where u= g Ui+ a,Urt...+a,Upand v = B Ui+ B, Uyt...+ B, Uy

%
)

a
p
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LUHVE (o F Uit (a,+ Bt H(a, + B, )Up
Now T(U + V) = T((a1+ﬂ1)ul+(a2+ﬂ2)u2+---+(ap +ﬂp)up)

= (et B )yt B,),....(a, + By)) 1) [~ by def” of T]
And T(u) +T(V) = (o, ap5..000,) + (B2 Bore-r By)
= ((a1+ﬂ1)’(a2+182)""’(ap+ﬂp)) (2)
From (1) and (2)
TU+v)=TU+T(v)____ (3)
Similarly if « is any scalar and ueU then it can be proved that
T (aU) = aT(u) (4)

From (3) and (4)

Hence T is linear map.
Now we want to prove that T is one —one.
Let ueN(T)
- T(u) =0y
s (ayhay,.,a,) =0
soo=0,0,=0,...,0,=0
~u=0,
N(T) is zero subspace of U.
- T s one —one.
Also T is onto.
Hence T is an isomorphism from U to V,,.
- Uand V, are isomorphici.e U= V,.



