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Sem-III 

MAT 202: Linear Algebra-I 
Unit-3 Linear transformations 

 

 

Definition:- Linear transformation :- 

 Suppose U and V are vector spaces either both real or both complex. 

 Then the map T: U  V is said to be a linear map (transformation,  

operator), if  

(i) T (u1 + u2 ) = T (u1) + T (u2 )  for all, u1 , u2 U 

(ii) T ( u ) =  T (u)   for all, u U and all scalars . 

 

Note:- A linear map T: U  U is said to be a linear map on U. 

 Whenever we say T: U  U is a linear map, then U and V shall be taken as  

vector spaces over the same field of scalars. 

 

Example:- Prove that the map  T: V3  V3  define by T (x1,x2,x3) = (x1,x2,0)  

linear map. 

Solution:- Let  be any scalar and  x, y V3 where x=(x1, x2, x3) and y = (y1,y2,y3)  

 x + y =(x1, x2, x3) + (y1,y2,y3)= (x1+ y1, x2+ y2  , .x3+ y3)  

 And   x=( x1,   x2,   x3) 

 Now T(x + y) = T(x1+ y1, x2+ y2  , .x3+ y3) 

        = (x1+ y1, x2+ y2,  0) ____________(1) 

             ( by definition of T) 

 Now T(x) + T(y) = T(x1, x2, x3) + T(y1,y2,y3) 

 = (x1, x2, 0) + (y1,y2,0)       ( by definition of T) 

    = (x1+ y1, x2+ y2,  0) ____________(2) 

  T( x)= T( x1,   x2,   x3) = ( x1,   x2, 0) 

       =  (x1,x2,0) _________(3) 

   T(x)= T (x1,x2,x3) =  (x1,x2,0)____________(4) 

From (1) ,(2),(3) and (4) 

   T: V3  V3  linear map. 

 

Note:- T: V3  V3  define by T (x1, x2, x3) = (x1, x2, 0) is called the projection on  

x1x2 plane. 

 

Example:- Prove that the map  T: V3  V2  define by T (x1,x2,x3) = (x1 - x2, x1+x3)  

linear map. 

Solution:- Let  be any scalar and  x, y V3 where x=(x1, x2, x3) and y = (y1,y2,y3)  

 x + y =(x1, x2, x3) + (y1, y2, y3)= (x1+ y1, x2+ y2  , .x3+ y3)  

 And   x=( x1,   x2,   x3) 

 Now T(x + y) = T(x1+ y1, x2+ y2  , .x3+ y3) 

        = (x1+ y1 - x2- y2,  x1+ y1+ x3+ y3) ____________(1) 

             ( by definition of T) 

 Now T(x) + T(y) = T(x1, x2, x3) + T(y1,y2,y3) 
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 = (x1 - x2, x1+x3) + (y1-y2, y1+y3)       ( by definition of T) 

    = (x1+ y1 - x2- y2,  x1+ y1+ x3+ y3) ____________(2) 

  T( x)= T( x1,   x2,   x3) = ( x1-  x2,  x1+  x3) 

       =  (x1 - x2, x1+x3) _________(3) 

   T(x)= T (x1,x2,x3) =  (x1 - x2, x1+x3) ____________(4) 

From (1) ,(2),(3) and (4) 

   T: V3  V2  linear map. 

 

Example:- Examine the map  T: V3  V1  define by T (x1,x2,x3) = ( 2

3

2

2

2

1 xxx   ) 

linear map or not. 

Solution:- Let  be any scalar and  x, y V3 where x=(x1, x2, x3) and y = (y1,y2,y3)  

 x + y =(x1, x2, x3) + (y1, y2, y3)= (x1+ y1, x2+ y2  , .x3+ y3)  

 And   x=( x1,   x2,   x3) 

 Now T(x + y) = T(x1+ y1, x2+ y2 , .x3+ y3) 

        = ((x1+ y1)
2
 + (x2+ y2)

2
  + (x3+ y3)

2
) ____________(1) 

             ( by definition of T) 

 Now T(x) + T(y) = T(x1, x2, x3) + T(y1,y2,y3) 

 = ( 2

3

2

2

2

1 xxx   )+ ( 2

3

2

2

2

1 yyy   )       ( by definition of T) 

         ____________(2) 

   

From (1) and (2) 

 T(x + y)  T(x) + T(y) 

   T: V3  V1 is not  linear map. 

 

Example:- Prove that the map  T: U  V  define by T (u) = 0v linear map. 

Solution:- Let  be any scalar and  x, yU  

   Now T(x + y) = 0v         _________(1) 

             ( by definition of T) 

 Now T(x) + T(y) = 0v + 0v  = 0v            ( by definition of T) 

                               ____________(2) 

  T( x)= 0v  _________(3) 

   T(x)=  0v = 0v  ____________(4) 

From (1) ,(2),(3) and (4) 

   T: V3  V2  linear map. 

Note:- the map  T: U  V  define by T (u) = 0v  is called zero map. 

 

Example:- Prove that the map  T: U  U  define by T (u) = u linear map. 

Solution:- Let  be any scalar and  x, yU  

   Now T(x + y) = x + y        _________(1) 

             ( by definition of T) 

 Now T(x) + T(y) = x + y            ( by definition of T) 

                               ____________(2) 

  T( x)=  x _________(3) 

   T(x)=  x=  x ____________(4) 

From (1) ,(2),(3) and (4) 

   T: U  U  linear map. 
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Note:- the map  T: U  U define by T (u) = u  is called identity map. 

 

Example:- Prove that the map  T: V2  V2  define by T (x1,x2) = (x1, - x2)  

linear map. 

Solution:- Let  be any scalar and  x, y V2 where x=(x1, x2) and y = (y1,y2)  

 x + y =(x1, x2) + (y1, y2)= (x1+ y1, x2+ y2  )  

 And   x=( x1,   x2) 

 Now T(x + y) = T(x1+ y1, x2+ y2) 

        = (x1+ y1, - x2- y2) ____________(1) 

             ( by definition of T) 

 Now T(x) + T(y) = T(x1, x2) + T(y1,y2) 

 = (x1 - x2) + (y1-y2)       ( by definition of T) 

    = (x1+ y1, - x2- y2) ____________(2) 

  T( x)= T( x1,   x2) = ( x1,-  x2) 

      =  (x1, - x2) _________(3) 

   T(x)= T (x1,x2) =  (x1, - x2) ____________(4) 

From (1) ,(2),(3) and (4) 

   T: V2  V2  linear map. 

 

Note:- the map  T: V2  V2  define by T (x1,x2) = (x1, - x2) is called the reflection  

in the x1-axis. 

 

Figure 

 

Example:- Prove that the map  D: Ç(1)
(a,b)  Ç(1)

(a,b)  define by D (f) = f '  

linear map. Where is the derivative of f. 

Solution:- Let  be any scalar and  f, g Ç(1)
(a,b)  

   

 Now T(f + g) = (f + g) ' 

        = f '+ g '____________(1) 

             ( by definition of T) 

 Now T(f ) + T(g) = f '+ g '  ____________(2) 

                                              ( by definition of T) 

      

  T( f)= ( f )' = (f )' _________(3) 

   T(f) = (f )'____________(4) 

From (1) ,(2),(3) and (4) 

   D: Ç(1)
(a,b)  Ç(1)

(a,b)   linear map. 

 

Example:- Prove that the map  D: Ç(1)
(a,b)  R  define by I (f) = 

b

a

dxxf )(  

linear map.  

Solution:- Let  be any scalar and  f, g Ç(1)
(a,b)  
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 Now T(f + g) =  

b

a

dxxgxf ))()((  

        = 
b

a

dxxf )(  + 
b

a

dxxg )( ____________(1) 

             ( by definition of T) 

 Now T(f ) + T(g) = 
b

a

dxxf )(  + 
b

a

dxxg )( ____________(2) 

                                              ( by definition of T) 

      

  T( f)= 
b

a

dxxf )( = 
b

a

dxxf )(  _________(3) 

   T(f) = 
b

a

dxxf )( ____________(4) 

From (1) ,(2),(3) and (4) 

   D: Ç(1)
(a,b)  R   linear map. 

 

Example:- Prove that the map  T: U  U  define by T (x) = x + u0  is not linear  

map. Where u0 is a fixed vector in U. 

Solution:- Let  be any scalar and  x, yU  

   Now T(x + y) = x + y + u0        _________(1) 

             ( by definition of T) 

 Now T(x) + T(y) = x + u0 + y + u0           ( by definition of T) 

                               ____________(2) 

   

From (1) and (2) 

 T(x + y)  T(x) + T(y) 

   T: U  U  is not linear map. 

Note:- the map  T: U  U  define by T (x) = x + u0  is called translation by the  

vector u0 .Where u0 is a fixed vector in U. 

 The function f: R  R  defined  by f(x) = x + a (‘a’ fixed) is called a linear 

function, because its  graph in xy-plane is straight line. But it is not a linear map 

from the vector space V1 to itself. 

 

Theorem:- let T: U  V be a linear map, then  

(a) T(0u) = 0v  

(b) T(-u) = -T(u) 

(c) T( 1 u1+ 2 u2+ 3  u3+ ….+ n un)  

= 1 T(u1)+ 2 T(u2)+ 3  T(u3)+ ….+ n T(un). 

i.e. A linear map T transforms the zero vector of U into the zero vector of V and 

negative of every u of U into the negative of T(u) of V. 

Proof:- (a)  T(0u) = T(0.u)          [ 0.u = 0, uU] 

    = 0T(u)          [ T is linear] 

=0v  

   (b) T(-u) = T(-1.u)          [ (-1).u = -u, uU] 
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= (-1)T(u)          [ T is linear] 

=-T(u) 

  (c) This result can be proved by mathematical induction. 

Let p(n): T( 1 u1+ 2 u2+ 3  u3+ ….+ n un)  

= 1 T(u1)+ 2 T(u2)+ 3  T(u3)+ ….+ n T(un). 

  Then p(1): T( 1 u1) = 1 T(u1) 

  Since T is linear this is obviously true. 

  So the result is true for n =1. 

  Assume that p(k) to be true 

 

i.e. p(k): T( 1 u1+ 2 u2+ 3  u3+ ….+ n uk)  

= 1 T(u1)+ 2 T(u2)+ 3  T(u3)+ ….+ n T(uk). is true. 

  We try to establish the result for n =k + 1 

T( 1 u1+ 2 u2+ 3  u3+ ….+ 1k uk+1)  

= 1 T(u1)+ 2 T(u2)+ 3  T(u3)+ ….+ 1k T(uk+1). 

By the hypothesis and linearity of T. 

Since (i) p(1) is true. 

 (ii) p(k)   p(k+1) 

The result is true for all n. 

 

 

Theorem:- A linear transformation T is completely determined by the values of elements of  

a basis. Precisely, if B={u1,u2,…,un} is a basis for U and v1,v2,…,vn be n vectors    

( not necessarily distinct) in V, then there exists a unique linear transformation 

T:U V such that T(ui) = vi for i=1,2,…,n. 

 

Proof:- Let uU . since B={ u1,u2,…,un} is a basis for U ,any vector u in U can be written as  

    a unique linear combination of basis elements. Hence there exist scalars 1 , 2 ,…, n       

     satisfying  

u= 1 u1+ 2 u2+…+ n un.      

    We define mapping T: UV by T(u)= 1 v1+ 2 v2+…+ n vn.   

     We prove the following facts: 

(i) T is linear transformation. 

(ii) T(ui) =vi 

(iii)  Such mapping T is unique. 

 

         Proof of (i):- Let u,vU . Then there are scalars 1 , 2 ,…, n  and 1 , 2 ,…, n  for 

which  

                    u= 1 u1+ 2 u2+…+ n un.      

       v= 1 u1+ 2 u2+…+ n un.  

      u + v =  11    u1+  22    u2+…+  nn    un 

By definition of T 

T(u) = 1 v1+ 2 v2+…+ n vn.   
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T(v)= 1 v1+ 2 v2+…+ n vn.   

T(u+v)=  11    v1+  22    v2+…+  nn    vn 

It is clear that  

 T(u+v)= T(u) +T(v) 

Also we can easily show that  

 T( u)=  T(u) 

For every scalar   and every vector uU. This establishes that T is a 

linear transformation from U to V. 

 

  (ii)  Now ui B, i=1,2,…,n 

   So, ui can be expressed in terms B as  ui =0.u1 + 0.u2 + 0.u3 + …. +0.un 

   T(ui) = 0.v1 + 0.v2 + 0.v3 + …. +0.vn 

           = vi, i= 1, 2, 3, …, n. 

  (iii) Let S: UV be any other linear transformation define by  

S(ui) =vi      i= 1, 2, 3, …, n. 

   Now S(u) = S( 1 u1+ 2 u2+…+ n un) 

          = 1 S(u1)+ 2 S(u2)+ 3  S(u3)+ ….+ n S(un). 

          = 1 v1+ 2 v2+…+ n vn  

           = T(u). 

     S(u) = T(u). 

  This proved that such mapping T is unique. 

 

Example:- If T is a linear transformation from  V2  V2  define by  

T (2,1) = (3, 4)  

T (-3,4) = (0, 5)  

then express (0, 1) as a linear combination of (2, 1) and (-3, 4). Hence find image of 

(0, 1) under T. 

Solution:-  Let (0, 1) =  (2, 1) +  (-3, 4) 

  (2 - 3  ,  +4  )=(0, 1)   

  2 - 3  = 0,  +4  = 1 

  Solving these equation then we get  = 
11

3
 ,  = 

11

2
 

  (0, 1) =
11

3
 (2, 1) +

11

2
 (-3, 4). 

 

  T(0, 1) =T(
11

3
 (2, 1) +

11

2
 (-3, 4)) 

          =
11

3
 T(2, 1) +

11

2
T (-3, 4) 

           = 
11

3
 (3, 4) +

11

2
(0, 5)  = 

11

1
 (9, 22) 

 Thus we get T(0, 1) = 
11

1
 (9, 22) 

 

Example:- If T is a linear transformation from  R
3
  R

3 
 define by  



 7 

 

T (e1) = e1 +e2 +e3 ,T (e2) = e2 + e3  and T(e3) = e2 – e3 where e1 ,e2 , e3 are unit 

vector of R
3
 . Then (i)Determine the transformation of (2, -1, 3) And 

(ii)describe explicitly the linear transformation T. 

Solution:-  Since e1 ,e2 , e3 are unit vector of R
3
 

   e1 =(1, 0, 0),e2 =(0, 1, 0) , e3 =(0, 0, 1) 

 We have T (e1) = e1 +e2 +e3 T(1, 0, 0) = (1, 0, 0 ) +(0, 1, 0) +(0, 0, 1)  

= (1, 1, 1 ) 

T (e2) = e2 + e3 T(0, 1, 0) = (0, 1, 0) +(0, 0, 1)  

= (0, 1, 1 ) 

           T(e3) = e2 – e3 T(0, 0, 1) = (0, 1, 0) - (0, 0, 1) 

               = (0, 1, -1 ) 

  Since e1 ,e2 , e3 form basis for  R
3
 . 

  every vector of R
3
can be uniquely expressed as a linear combination of e1 ,e2 , e3. 

 (i) Now (2, -1, 3) = 2(1, 0, 0 ) +(-1)(0, 1, 0) +3(0, 0, 1)  = 2e1 +(-1)e2 +3e3 

  T(2, -1, 3) = 2T(e1)+(-1)T(e2)+3T(e3) 

 

   = 2 (1, 1, 1) + (-1) (0, 1, 1 ) + 3(0, 1, -1 ) 

   = (2, 4, -2) 

 (ii) (x, y, z) R
3
. 

  Now (x, y, z) = x(1, 0, 0 ) + y(0, 1, 0)+ z(0, 0, 1) = xe1 +ye2 +ze3 

  T(x, y, z) =  xT(e1) +yT(e2) +zT(e3) 

           =  x (1, 1, 1 ) +y (0, 1, 1 )+z (0, 1, -1 ) 

           = (x, x + y + z, x+ y – z) 

  T(x, y, z) = (x, x + y + z, x+ y – z)  

Which is require linear transformation T. 

 

 

 

Range and Kernel of a Linear map 

 

 

Definition:-Kernel of a Linear map (null space) 

 Let T: UV be a linear map. The Kernel (null space) of T is the set  

N(T) = {uU/ T(u) = 0}. 

It is denoted as kerT. 

OR    N(T) is the set of all those elements in U that are mapped by T into the zero of V. 

  

Definition:- Range of a Linear map (null space) 

 Let T: UV be a linear map. The range of T is the set  

R(T) = {T(u)V/ uU }. 

It is denoted as kerT. 

 

Example:- Let T: V3  V3   be a linear map define by T(x1,x2,x3)= (x1,x2,0)  Find N(T) &  

        R(T)   (OR)   Find the range and kernel of T. 

Solution:-  Here ,R(T) = {(x1,x2,0) / x1,x2  R} 
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  R(T) is x1x2 plane.  

T is not onto.  

Since R(T) is a subset of co domain V3. 

T is not one-one.  

Since different vectors (1,0,2) and (1,0,5) have the same image (1,0,0). 

N(T) = x3-axis. 

  Since any vector (0,0, x3) on the x3-axis will be taken onto zero to vector of V3. 

 

Example:- Let T: UU be an identity linear map then find N(T) &   R(T). 

 (OR)   Find the range and kernel of T. 

Solution:-  Here T: UU be an identity linear map. 

  i.e. T(u) = u  for uU. 

  This is one – one and onto linear map. 

   R(T) = U  and N(T) = 0 

 

Example:- Let T: UU be zero linear map then find N(T) &   R(T). 

 (OR)   Find the range and kernel of T. 

Solution:-  Here T: UU be zero linear map. 

  i.e. T(u) = 0  for uU. 

  This is not one – one and onto linear map. 

   R(T) = 0  and N(T) = U 

   

Example:-Let T: V3  V2 be a linear map define by T (x1, x2, x3) = (x1 - x2, x1+x3) then find  

N(T) &   R(T)   (OR)   Find the range and kernel of T. 

. Solution:-  Here T: V3  V2 be a linear map define by T (x1,x2,x3) = (x1 - x2, x1+x3) 

 Let (a, b)V2 such that  T (x1,x2,x3) = (a, b)    

     (x1 - x2, x1+x3) = (a, b) 

     x1 - x2 = a , x1+x3 = b 

    Solving these equation then we get  

    x2 = x1 – a, x3 = b - x1  

  Hence T (x1, x1 – a, b - x1) = (a, b) 

              R(T) = V2        ( every vector (a, b)V2 in R(T) ) 

  So this is onto map. 

 Now for kernel of T 

  T (x1, x2, x3) = (0, 0) 

   (x1 - x2, x1+x3) = (0, 0) 

    x1 - x2 = 0 , x1+x3 = 0 

    Solving these equation then we get  

   x1= x2 = -x3 

  i.e. all vectors of the form (x1,x1,-x1) will be mapped into zero. 

     N(T) = { x1 (1,1,-1) / x1 any scalar} = [(1,1,-1)] 

 

Example:-    Let T: V2  V2 be a linear map define by T (x1, x2) = (x1, - x2) then find N(T) &    

R(T)   (OR)   Find the range and kernel of T. 

. Solution:-  Solution:-  Here T: V2  V2 be a linear map define by T (x1,x2) = (x1, - x2) 

 Let (a, b)V2 such that  T (x1,x2) = (a, b)    
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     (x1 ,- x2) = (a, b) 

     x1 = a , - x2 = b 

    Solving these equation then we get  

    x1 = a , x2 = -b 

  Hence T (a, – b ) = (a, b) 

              R(T) = V2        ( every vector (a, b)V2 in R(T) ) 

  So this is onto map. 

 Now for kernel of T 

  T (x1, x2) = (0, 0) 

   (x1 ,- x2) = (0, 0) 

   x1 = 0 , x2 = 0 

   N(T) = (0,0)}  

 

Example:- Let the map  D: Ç(1)
(a,b)  Ç(1)

(a,b)  define by D (f) = f '  

linear map. Where is the derivative of f. then find N(T) & R(T).   (OR)   Find the range 

and kernel of T. 

 

Solution:-  Since every continuous function g on (a, b) possesses an antiderivative.   

hence D is an onto map. 

 R(D) = Ç(1)
(a,b) . 

And N(D) is the set of all constant functions in Ç(1)
(a,b)  . 

  

Example:- Let the map  D: Ç(1)
(a,b)  R  define by I (f) = 

b

a

dxxf )( linear map. Where is the  

derivative of f. then find N(T) & R(T).   (OR)   Find the range and kernel of T. 

 

Solution:- Since every real number can be obtained as the algebraic area under some  

curve y = f(x) from a to b.   

hence D is an onto map. 

 R(D) = R . 

And it is difficult to say anything about kernel i.e. N(D). 

 

Note :- From above example we see that if T is one-one when N(T) is the zero subspace and  

conversely. 

 

Theorem:-  Let T: UV be a linear map. Then 

(a) R(T) is a subspace of V. 

(b) N(T) is subspace of U. 

(c) T is one-one iff N(T) is the zero subspace, {0U}, of U. 

(d) If [u1,u2,…,un] = U, then [T(u1),T(u2),…,T(un)] 

(e) If U is finite- dimensional, then dimR(T)dimU. 

Proof:-  (a) we want to prove that R(T) is a subspace of V. 

 For this , let v1,v2 R(T) such that T(u1) = v1 and T(u2) = v2    for u1,u2U. 

 Now v1 + v2 = T(u1) +  T(u2) = T(u1 +  u2)            [T: UV be a linear map] 

 Since U is a vector space . 

  u1 +  u2U 
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 And T: UV be a linear map 

  T(u1 +  u2) = v1 + v2 R(T) 

 Similarly ,  v1 R(T) then  v1 =  T(u1) = T( u1)  R(T). 

Thus R(T) is a subspace of V. 

  

(b) we want to prove that N(T) is a subspace of U.  

 For this , let u1,u2 N(T) such that T(u1) = 0v and T(u2) = 0v    for u1,u2U. 

 Now T(u1 + u2)= T(u1) +  T(u2) =  0v           [T: UV be a linear map] 

   T(u1 +  u2) = 0v  

 u1 +  u2 N(T) 

 Similarly , for any scalar  T( u1)=  T(u1) = 0v =0v N(T).  

   u1N(T) 

Thus N(T) is a subspace of V. 

 

(c) Suppose T is one-one.  

       We want to prove that N(T) is the zero subspace, {0U}, of U. 

  Since T is one-one then T(u) =  T(v)  u = v 

 If uN(T) then T(u) = 0v =  T(0U). 

 u = 0U 

i.e. no nonzero vector u of U can belong to N(T). 

Since 0U in any case belongs to N(T). 

i.e. N(T) contains only 0U and nothing else. 

Hence, N(T) is the zero subspace, {0U}, of U. 

 Conversely,  

  Suppose N(T) = {0U} 

  We want to prove that T is one-one. 

  i.e. We want to prove that T(u) =  T(v)  u = v 

  suppose T(u) =  T(v) 

  then T(u-v) = T(u) -  T(v) = 0V. 

   u – v N(T) =  {0U} 

   u – v = 0U. 

  i.e. u = v 

  i.e. T is one-one. 

 (d) let [u1,u2,…,un] = U 

  uU 

  then u can be expressed as a linear combination of vectors u1,u2,…,un. 

  The T(u1),T(u2),…,T(un) are in R(T). 

  So [T(u1),T(u2),…,T(un)]R(T). 

  Let vR(T). 

  Then there exists a vector uU such that T(u) = v. 

  Since uU = [u1,u2,…,un], we have 

   u= 1 u1+ 2 u2+…+ n un. 

   v = T(u) =T( 1 u1+ 2 u2+…+ n un)  

   = 1 T(u1)+ 2 T(u2)+ 3  T(u3)+ ….+ n T(un). 

So v[ T(u1),T(u2),…,T(un)]. 

This proves that R(T) = [ T(u1),T(u2),…,T(un)]. 
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(e)  Let U be finite dimensional and dim U = n. 

  So there can be at most n LI vectors in U. 

  Let { u1,u2,…,un} be the basis of U. 

  Then R(T) = [T(u1),T(u2),…,T(un)] 

  So that there can’t be more than n LI vectors inR(T). 

  So dimR(T)= ndimU.  

 

Definition:- Rank of T:- 

 Let T: UV be a linear map. Then If R(T) is finite- dimensional, the dimension  

of R(T) (i.e.dimR(T)) is called the rank of T and is denoted by r(T). 

 

Definition:- nullity of T:- 

 Let T: UV be a linear map. Then If N(T) is finite- dimensional, the dimension of  

N(T) (i.e.dimN(T)) is called the nullity of T and is denoted by n(T). 

Rank and Nullity 

 

 

Theorem:- Let T: UV be a linear map. Then 

(a) If T is one-one and u1,u2,…,un. are linearly independent vectors of U, then  

T(u1),T(u2),…,T(un) are LI. 

(b)If v1,v2,…,vn are linearly independent vectors of R(T) and u1,u2,…,un are vectors of U    

such that T(u1) = v1, T(u2) = v2, …,T(un) = vn then u1,u2,…,un. are linearly independent. 

Proof:- (a) Let T is one-one and {u1,u2,…,un}are linearly independent vectors in U. 

   We want to prove that T(u1),T(u2),…,T(un) are LI. 

Consider  1 T(u1)+ 2 T(u2)+ 3  T(u3)+ ….+ n T(un) = 0v  

 T( 1 u1+ 2 u2+…+ n un) = 0v         [T is linear map] 

Also T(0u) = 0v 

Since T is one-one is given. 

   1 u1+ 2 u2+…+ n un= 0u 

  Since u1,u2,…,un. are linearly independent vectors of U is given. 

 1 = 2 =…= n = 0 

Thus T(u1),T(u2),…,T(un) are LI. 

 (b) Since v1,v2,…,vn are linearly independent vectors in V  

and T(u1) = v1, T(u2) = v2, …,T(un) = vn where u1,u2,…,unU is given. 

We want to prove that u1,u2,…,un. are linearly independent. 

Consider 1 u1+ 2 u2+…+ n un = 0 

 T( 1 u1+ 2 u2+…+ n un) = 0v     [T is linear map] 

 1 T(u1)+ 2 T(u2)+ 3  T(u3)+ ….+ n T(un) = 0v  

Since T(u1),T(u2),…,T(un) are LI 

 1 = 2 =…= n = 0 

Hence u1,u2,…,un. are linearly independent vectors in U. 

 

Theorem:- (Rank and Nullity Theorem): 

 Let T: UV be a linear map and U a finite dimensional vector space. Then prove that 
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 dim R(T) + dim N(T) = dim U. 

     i.e   r(T) + n(T) = dim U 

    (or)    rank + nullity = dimension of the domain space. 

Proof:- N(T) is a subspace of a finite dimensional vector space U. Then N(T) must be finite  

dimensional. 

Let dim N(T) = n(T) = n and dim U = p . 

So, np 

Let the basis for N(T) be { u1,u2,…,un}. 

  { u1,u2,…,un}are linearly independent vectors in N(T) 

 {u1,u2,…,un}are linearly independent vectors in U. 

 Now extend this set of n linearly independent vectors of U to the basis for u. 

 So we find the vectors un+1,un+2,…,up  

 So that the enlarged set { u1,u2,…,un , un+1,un+2,…,up } is a basis for U. 

 Since this set of p vectors generate vector space U. 

 R(T) =[ T(u1),T(u2),…,T(up)] 

 But ui N(T), i = 1, 2, 3, …,n. 

 Hence T(u) = 0v, i = 1, 2, 3, …,n. 

 R(T) = [T(un+1),T(un+2),…,T(up)] 

 Now we shall prove that A = { T(un+1),T(un+2),…,T(up)} is basis for R(T). 

 Since we already proved that R(T) = [T(un+1),T(un+2),…,T(up)] 

 So we have only prove that A is LI set. 

 Let us consider 1n T(un+1)+ 2n T(un+2)+…+ p T(up) = 0 

 T[ 1n un+1+ 2n un+2+…+ p up] = 0 

 Since T is linear 

 1n un+1+ 2n un+2+…+ p upN(T). 

 But N(T) has a basis {u1,u2,…,un}  

so 1n un+1+ 2n un+2+…+ p up which is the elements of N(T) can be expressed as a 

linear combination of basis {u1,u2,…,un} of N(T). 

there exists scalars 1 , 2 ,…, n such that  

1n un+1+ 2n un+2+…+ p up = 1 u1+ 2 u2+…+ n un 

 1 u1+ 2 u2+…+ n un +(-1) 1n un+1+ (-1) 2n un+2+…+ (-1) p up = 0 

Since {u1,u2,…,up} is a basis for t vector space U this set is LI. 

So 1n = 2n =…= p = 0 

 This prove that set A  is LI. 

 A = { T(un+1),T(un+2),…,T(up)} is basis for R(T). 

Dim R(T) = number of elements in basis A  

      = p – n 

      =   dim U - dim N(T) 

Hence rank + nullity = dimension of the domain space.  

 

Example:- Prove that the linear map T : V3  V3 define by T (e1) = e1 - e2 , T (e2) = 2e2 + e3  

and  T(e3) = e1 + e2 + e3 is neither one-one nor onto. 

Solution:- Here R(T) = [T (e1), T (e2) ,  T(e3)]  

    = [e1 - e2 , 2e2 + e3 ,  e1 + e2 + e3]  
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     =[ e1 - e2 , 2e2 + e3] 

Since e1 + e2 + e3 is linear combination of e1 - e2 , 2e2 + e3  

R(T) has dimension 2. 

R(T)  V3 

 T is not onto. 

 Since N(T) consists those vectors (x1 , x2 , x3) V3 such that T (x1 , x2 , x3) = 0. 

  i.e  T(x1e1+ x2 e2 + x3 e3) = 0 

 x1 T(e1)+ x2 T(e2) + x3 T(e3) = 0   

  x1 (e1 - e2) + x2 (2e2 + e3 )+ x3 (e1 + e2 + e3) = 0   

  x1 + x3= 0 , -x1 +2 x2 +x3 = 0 and x2+ x3= 0 

 Solving these equation then we get x1 = x2 = -x3 

  N(T) = { (x1 , x1 , -x1)/ x1 an arbitrary scalar}= [(1, 1,-1)]. 

  N(T) is not the zero subspace of V3. 

 Hence T is not one-one. 

 

Example:- Let linear map T : V4  V3 define by T (e1) =(1, 1, 1), T (e2) = (1, -1, 1) ,  T(e3) =  

(1, 0, 0) and T(e4) = (1, 0, 1) then verify that r(T) + n(T) = dim U(=V4) = 4. 

Solution:- Here R(T) = [T (e1), T (e2) ,  T(e3), T(e4)]  

   R(T) = [(1, 1, 1),  (1, -1, 1) , (1, 0, 0) , (1, 0, 1)] 

  (1, 1, 1),  (1, -1, 1) , (1, 0, 0)  (1, 0, 1) is LD, because a set of four vectors of V3  

(dim V3 = 3)is always LD. 

Now find that (1, 0, 1) = 
2

1
 (1, 1, 1) +

2

1
 (1, -1, 1) +0 (1, 0, 0) 

Hence we discard the vector (1, 0, 1) so that  

R(T) = [(1, 1, 1),  (1, -1, 1) , (1, 0, 0)] 

Now check R(T) is LI. 

Let 1 , 2 , 3 R such that 1 (1, 1, 1)+ 2 (1, -1, 1)+ 3 (1, 0, 0) = 0 

  ( 1 + 2 + 3 , 1 - 2 , 1 + 2 ) = 0 

   1 + 2 + 3 = 0, 1 - 2 = 0, 1 + 2  = 0 

  From above equations we get  

  1 = 2 = 3 = 0 

 Hence {(1, 1, 1), (1, -1, 1) , (1, 0, 0)} is LI. 

 dim R(T) = r(T) = 3 

 Now we find N(T). 

 Let  us suppose that T(u) = 0 for u V4  where u = (x1 , x2 , x3, x4),  

Now u  = x1e1+ x2e2+ x3e3+x4e4 

 T(u) = T(x1e1+ x2e2+ x3e3+x4e4) = 0 

  x1 T(e1)+ x2 T(e2) + x3 T(e3) = 0   

  x1 [(1, 1, 1)+ x2 (1, -1, 1) + x3 (1, 0, 0) ++ x4 (1, 0, 1)  = 0   

  x1 + x2+ x3+ x4= 0 , x1 - x2 = 0 and + x1+x2+ x4= 0 

 Solving these equation then we get x1 = x2 = -x4/2, x3 =0 

  N(T) = { (x1 , x1 , 0,-2x1)/ x1 an arbitrary scalar}= [(1, 1,0,-2)]. 

 dim N(T) = n(T) =1 

 Hence r(T) + n(T) = 3 +1 = 4 = dim U(=V4)  
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Inverse of a linear transformation 

 

Definition:- Nonsingular or Isomorphism : 

 A linear map T : U  V is said to be nonsingular if it is one – one and onto. Such a  

map is also called an isomorphism.   

 

Definition:- Inverse function: 

 Any function is called inverse function iff it is one – one and onto. 

 

Note: a linear transformation is Nonsingular iff it has an inverse. 

 

Example:- Define a linear map T : V2  V2 by T(x1 , x2) = (x1 , -x2). Prove that this map is  

Nonsingular.   

Solution:- Here the linear map T : V2  V2  define by T(x1 , x2) = (x1 , -x2) 

 Now for N(T) 

  T(x1 , x2) = 0 

(x1 , -x2) = 0 

x1 = 0 and x2 = 0  

N(T) = 0 

This linear map T is one – one. 

Now for R(T) 

For every  (y1 , y2)V2  then there exists (x1 , x2)V2 such  that  

T(x1 , x2) = (y1 , y2) 

(x1 , -x2) =(y1 , y2) 

x1 = y1and x2 = y2 

R(T) = V2   

This linear map T is onto 

  T
-1

(y1 , y2) = (y1 , -y2). 

 it has inverse 

     This map is Nonsingular.  

 

Example:- Prove that a linear map  T: U  U  define by T (u) = u is Nonsingular. 

 (OR)Prove that an identity linear map is one-one and onto. 

 (OR) Find the inverse of a linear map  T: U  U  define by T (u) = u. 

Solution:- Here the linear map T : U  U  define by T(u) = (u) 

 Now for N(T) 

  T(u) = 0 

u = 0 

N(T) = 0 

This linear map T is one – one. 

Now for R(T) 

For every  (y )U  then there exists (u)U such  that  

T(u) = (y) 

(u) =( y) 

R(T) = U 
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This linear map T is onto 

  T
-1

(y) = (y). 

 it has inverse 

     This map is Nonsingular.  

 

Example:- Prove that a linear map   T : P2  V3 define by T ( 0 + 1 x + 2 x
2
) = ( 0 , 1 , 2 )is  

Nonsingular. OR  Prove that a linear map   T : P2  V3 define by T ( 0 + 1 x + 2 x
2
) = 

( 0 , 1 , 2 ) is isomorphism. 

Solution:- Here the linear map T : P2  V3 define by T ( 0 + 1 x + 2 x
2
) = ( 0 , 1 , 2 )

 Now for N(T) 

  T ( 0 + 1 x + 2 x
2
) = 0 

( 0 , 1 , 2 ) = 0 

 0 = 1 = 2 = 0 

N(T) = 0 

This linear map T is one – one. 

Now for R(T) 

For every  ( 1 , 2 , 3  ) V3  then there exists ( 1 + 2 x + 3 x
2
) P2 such  that  

T( 1 + 2 x + 3 x
2
) = ( 1 , 2 , 3 ) 

( 1 , 2 , 3 ) is image of T. 

R(T) = V3 

This linear map T is onto 

  T
-1

( 1 , 2 , 3 ) = ( 1 + 2 x + 3 x
2
). 

 it has inverse 

     This map is Nonsingular.  

 

Theorem:- Let T : U  V  be nonsingular linear map. Then T
-1

 : V  U   is a linear, one –  

one and onto map.   

Proof:- First to prove that T
-1

 is  linear. 

 Let v1,v2V. 

 Let T
-1

(v1)= u1 and T
-1

(v2) = u2     for u1,u2U. 

    Since T is nonsingular linear map 

  T is one – one and onto map.   

  u1and u2 exists uniquely. 

   v1 = T(u1) and   v2 = T(u2)   

   v1 + v2 = T(u1) + T(u2) = T(u1 + u2)     [ T is linear] 

    T
-1

(v1 + v2)= u1 + u2 = T
-1

(v1) + T
-1

(v2) 

     we get  T
-1

(v1 + v2) = T
-1

(v1) + T
-1

(v2) 

 Also  v1 =   T(u1) =  T( u1) 

  T
-1

( v1) =  u1 =  T
-1

(v1) 

   i.e. T
-1

( v1) =  T
-1

(v1) 

  T
-1

  is linear. 

Now we want to prove that T
-1

  is one-one. 

 Let v1,v2V such that  T
-1

(v1) = T
-1

(v2) = u say  for uU. 
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          v1 = v2= T(u) 

Since image of u under T is unique. 

    v1 = v2 

  Thus we get  T
-1

(v1) = T
-1

(v2)      v1 = v2 

   T
-1

  is one-one. 

Now we want to prove that T
-1

  is onto. 

Given any element uU then there exists an element vV such that 

 T(u) = v.  

 u =T
-1

(v) 

This show that T
-1

  is onto. 

  T
-1

 : V  U   is a linear, one – one and onto map.   

 

Example:- Check that a linear map  T: U  U  ,where U is vector space, define by  

T (x) = T({x1 , x2 , x3,…, xn, …}) = { x2 , x3,…, xn, …} is Nonsingular or not. Also 

check the inverse of this linear map is exist or not. 

Solution:- Here the linear map T : U  U  define by  

T({x1 , x2 , x3,…, xn, …}) = { x2 , x3,…, xn, …}  

Now for N(T) 

  T (x)= 0 

 T({x1 , x2 , x3,…, xn, …})  = 0 

 { x2 , x3,…, xn, …} =0 

Here let x1  = z which may not be zero. 

N(T) = {z, 0, 0, 0, ……} 

N(T)  0 

This linear map T is not one – one. 

Now for R(T) 

For every  (y1 , y2 , y3,…, yn, … )U  then there exists (z, y1 , y2 , y3,…, yn, … )U 

such  that T({z, y1 , y2 , y3,…, yn, … }) = (y1 , y2 , y3,…, yn, … ) 

{ z, y1 , y2 , y3,…, yn, … } is pre image of { y1 , y2 , y3,…, yn, … } 

R(T) = U 

This linear map T is onto 

Thus we get T is onto but not one-one.   

     This map is not nonsingular.  

        Also T has not inverse. 

 

Example:- Check that a linear map  T: U  U ,where U is vector space,  define by  

T (x) = T({x1 , x2 , x3,…, xn, …}) = {0, x1, x2 , x3,…, xn, …} is Nonsingular or not. 

Also check the inverse of this linear map is exists or not. 

Solution:- Here the linear map T : U  U  define by  

T({x1 , x2 , x3,…, xn, …}) = {0, x1,  x2 , x3,…, xn, …}  

Now for N(T) 

  T (x)= 0 

 T({x1 , x2 , x3,…, xn, …})  = 0 

 {0, x1, x2 , x3,…, xn, …} =0 

N(T) = {0, 0, 0, 0, ……} 
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N(T) = 0 

This linear map T is one – one. 

Now for R(T) 

let  (1 , 1 , 1,…, 1, … )U   has no pre image in U 

R(T)   U 

This linear map T is not onto 

Thus we get T is  not onto but one-one.   

     This map is not nonsingular. 

   Also T has not inverse. 

 

Theorem:- If U and V are finite dimensional vector spaces of the same dimension, then a  

linear map T: U  V is one-one iff it is onto. 

Proof:-  T is one –one N(T) = {0v} 

          n(T) = 0 

          r(T) = dim U = dim V 

[By Rank and Nullity Theorem    i.e   r(T) + n(T) = dim U] 

          T is onto. 

Example:- Show that the linear map T : V3  V3 defined by  

T(x1 , x2, x3) = (x1 + x2+ x3 ,x2 +x3, x3) is nonsingular and find its inverse.   

Solution:- Here the linear map T : V3  V3 defined by T(x1 , x2, x3) = (x1 + x2+ x3 ,x2 +x3, x3)

 Now for N(T) 

  T(x1 , x2, x3) = 0 

(x1 + x2+ x3 ,x2 +x3, x3)= 0 

x1 + x2+ x3 = 0 ,x2 +x3 = 0, x3 = 0 

x1 = 0, x2 = 0  and x3 = 0 

N(T) = 0 

This linear map T is one – one. 

Since the dimension of  domain space and dimension of   co domain space are equal. 

 T is onto. 

Thus we get T is one-one and onto. 

Hence T is nonsingular and the inverse of T exists. i.e.T
-1

 exists. 

Now we derive the formula for T
-1

. 

Let T
-1

(y1 , y2, y3) = (x1 , x2, x3).__________(1) 

(y1 , y2, y3) = T(x1 , x2, x3) 

(y1 , y2, y3) = (x1 + x2+ x3 , x2 +x3, x3) 

y1 = x1 + x2+ x3, y2 = x2 +x3 , y3= x3 

Solving these equation then we get 

x1 = y1 - y2,  x2 = y2 -y3 and   x3 = y3 

put the values of x1 , x2, x3 in equation (1) then we get 

T
-1

(y1 , y2, y3) = (y1 - y2,  y2 -y3 , y3) 

 

Example:- Show that the linear map T : V3  V3 defined by T (e1) = e1 + e2 , T (e2) = e2 + e3  

and  T(e3) = e1 + e2 + e3 is nonsingular and find its inverse. 

Solution:-   First we find  the value of T. 

Let (x1 , x2, x3)V3 such  
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T(x1 , x2, x3) = T(x1e1 + x2 e2+ x3 e3)  

= x1 T(e1) + x2 T (e2) + x3 T(e3) 

= x1 (e1 + e2) + x2  (e2 + e3) + x3(e1 + e2 + e3) 

= x1 (1,1,0) + x2  (0,1,1) + x3(1,1,1)  

 [Where e1= (1,0,0) , e2 = (0,1,1)and e3= (0,1,1)] 

    = (x1 + x3 , x1+ x2 +x3, x2+ x3) 

 i.e. T(x1 , x2, x3) = (x1 + x3 , x1+ x2 +x3, x2+ x3) 

Now for N(T) 

  T(x1 , x2, x3) = 0 

(x1 + x3 , x1+ x2 +x3, x2+ x3)= 0 

x1 + x3  = 0, x1 + x2+ x3 = 0 , x2 +x3 = 0,  

x1 = 0, x2 = 0  and x3 = 0 

N(T) = 0 

This linear map T is one – one. 

Since the dimension of domain space and dimension of   co domain space are equal. 

 T is onto. 

Thus we get T is one-one and onto. 

Hence T is nonsingular and the inverse of T exists. i.e.T
-1

 exists. 

Now we derive the formula for T
-1

. 

Let T
-1

(y1 , y2, y3) = (x1 , x2, x3).__________(1) 

(y1 , y2, y3) = T(x1 , x2, x3) 

(y1 , y2, y3) = (x1 + x3 , x1+ x2 +x3, x2+ x3) 

y1 = x1 + x3, y2 = x1+ x2 +x3, y3= x2+ x3 

Solving these equation then we get 

x1 = y2 – y3,  x2 = y2 –y1 and   x3 = y1– y2 + y3 

put the values of x1 , x2, x3 in equation (1) then we get 

T
-1

(y1 , y2, y3) = (y2 – y3,  y2 –y1 , y1– y2 + y3) 

Consequences of rank nullity  theorem 
 

Definition:-Isomorphic:- 

Two vector spaces U and V are said to be isomorphic if there exists an isomorphism  

from U to V. 

If U and V are isomorphic then we write U ≈ V. 

 

Theorem:- Every real (complex) vector space of dimension p is isomorphic to Vp(
c

pV ) 

Proof:- Let U be a real vector space of dimension p.  

  Let B = {u1 , u2 , u3,…, up} an ordered basis for U. 

Let uU  

u = 1 u1+ 2 u2+…+ p up 

i.e u is linear combination of set B. 

 the coordinate vector of  U relative to B is { 1 , 2 ,…, p } 

Now define a mapping T : U  Vp by T(u) = ( 1 , 2 ,…, p ) 

We want to prove that T is linear map. 

Let u, vU where u = 1 u1+ 2 u2+…+ p up and v = 1 u1+ 2 u2+…+ p up 
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 u + v = ( 1 + 1 )u1+( 2 + 2 )u2+…+( p + p )up 

Now T(u + v) = T(( 1 + 1 )u1+( 2 + 2 )u2+…+( p + p )up) 

  = (( 1 + 1 ),( 2 + 2 ),…,( p + p )) _______(1)            [ by def
n
 of T] 

And T(u) +T( v) = ( 1 , 2 ,…, p ) + ( 1 , 2 ,…, p ) 

        = (( 1 + 1 ),( 2 + 2 ),…,( p + p )) _______(2) 

From (1) and (2)  

T(u + v) = T(u) +T( v) __________(3) 

Similarly if   is any scalar and uU then it can be proved that  

T ( u) =  T(u) ____________(4) 

From (3) and (4)  

Hence T is linear map. 

 Now we want to prove that T is one –one. 

 Let uN(T) 

  T(u) = 0vp 

  ( 1 , 2 ,…, p ) = 0 

  1 = 0, 2 = 0,…, p = 0 

 u = 0u 

 N(T) is zero subspace of U. 

  T is one –one. 

 Also T is onto. 

 Hence T is an isomorphism from U to Vp. 

  U and Vp are isomorphic i.e U ≈ Vp . 


