Sem-III MAT 202: Linear Algebra-I Unit-3 Linear transformations

Definition:- Linear transformation :-

Suppose U and V are vector spaces either both real or both complex. Then the map T: $U \rightarrow V$ is said to be a linear map (transformation, operator), if

(i) $T(u_1 + u_2) = T(u_1) + T(u_2)$ for all, $u_1, u_2 \in U$

(ii) $T(\alpha u) = \alpha T(u)$ for all, $u \in U$ and all scalars α .

Note:- A linear map T: $U \rightarrow U$ is said to be a linear map on U. Whenever we say T: $U \rightarrow U$ is a linear map, then U and V shall be taken as vector spaces over the same field of scalars.

Example:- Prove that the map T: $V_3 \rightarrow V_3$ define by T $(x_1, x_2, x_3) = (x_1, x_2, 0)$ linear map.

Solution:- Let α be any scalar and $x, y \in V_3$ where $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ $\therefore x + y = (x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$ And $\alpha x = (\alpha x_1, \alpha x_2, \alpha x_3)$ Now $T(x + y) = T(x_1 + y_1, x_2 + y_2, x_3 + y_3)$ $= (x_1 + y_1, x_2 + y_2, 0)$ (1) (\because by definition of T)

Now
$$T(x) + T(y) = T(x_1, x_2, x_3) + T(y_1, y_2, y_3)$$

 $= (x_1, x_2, 0) + (y_1, y_2, 0)$ (:: by definition of T)
 $= (x_1 + y_1, x_2 + y_2, 0)$ (2)
 $T(\alpha x) = T(\alpha x_1, \alpha x_2, \alpha x_3) = (\alpha x_1, \alpha x_2, 0)$
 $= \alpha (x_1, x_2, 0)$ (3)
 $\alpha T(x) = \alpha T (x_1, x_2, x_3) = \alpha (x_1, x_2, 0)$ (4)
From (1), (2), (3) and (4)
 $T: V_3 \rightarrow V_3$ linear map.

Note:- T: $V_3 \rightarrow V_3$ define by T $(x_1, x_2, x_3) = (x_1, x_2, 0)$ is called the projection on x_1x_2 plane.

Example: Prove that the map T: $V_3 \rightarrow V_2$ define by T $(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_3)$ linear map.

Solution:- Let α be any scalar and $x, y \in V_3$ where $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ $\therefore x + y = (x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$ And $\alpha x = (\alpha x_1, \alpha x_2, \alpha x_3)$ Now $T(x + y) = T(x_1 + y_1, x_2 + y_2, x_3 + y_3)$ $= (x_1 + y_1 - x_2 - y_2, x_1 + y_1 + x_3 + y_3)$ (1) (\because by definition of T) Now $T(x) + T(x) = T(x_1 - x_2 - x_3) + T(x_1 - x_3 - x_3)$

Now $T(x) + T(y) = T(x_1, x_2, x_3) + T(y_1, y_2, y_3)$

$$= (x_{1} - x_{2}, x_{1} + x_{3}) + (y_{1} - y_{2}, y_{1} + y_{3}) \quad (\because \text{ by definition of T})$$

$$= (x_{1} + y_{1} - x_{2} - y_{2}, x_{1} + y_{1} + x_{3} + y_{3}) \qquad (2)$$

$$T(\alpha x) = T(\alpha x_{1}, \alpha x_{2}, \alpha x_{3}) = (\alpha x_{1} - \alpha x_{2}, \alpha x_{1} + \alpha x_{3})$$

$$= \alpha (x_{1} - x_{2}, x_{1} + x_{3}) \qquad (3)$$

$$\alpha T(x) = \alpha T (x_{1}, x_{2}, x_{3}) = \alpha (x_{1} - x_{2}, x_{1} + x_{3}) \qquad (4)$$
From (1), (2), (3) and (4)
T: V_{3} \rightarrow V_{2} linear map.

Example: Examine the map T: $V_3 \rightarrow V_1$ define by T $(x_1, x_2, x_3) = (x_1^2 + x_2^2 + x_3^2)$ linear map or not.

Solution:- Let α be any scalar and $x, y \in V_3$ where $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ $\therefore x + y = (x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$ And $\alpha x = (\alpha x_1, \alpha x_2, \alpha x_3)$ Now $T(x + y) = T(x_1 + y_1, x_2 + y_2, x_3 + y_3)$ $= ((x_1 + y_1)^2 + (x_2 + y_2)^2 + (x_3 + y_3)^2)$ (1) (\because by definition of T) Now $T(x) + T(y) = T(x_1, x_2, x_3) + T(y_1, y_2, y_3)$ $= (x_1^2 + x_2^2 + x_3^2) + (y_1^2 + y_2^2 + y_3^2)$ (\because by definition of T) (2)

> From (1) and (2) \therefore T(x + y) \neq T(x) + T(y) T: V₃ \rightarrow V₁ is not linear map.

Example:- Prove that the map T: U \rightarrow V define by T (*u*) = 0_v linear map. **Solution:**- Let α be any scalar and $x, y \in U$

Now $T(x + y) = \theta_v$ _____(1) (\because by definition of T) Now $T(x) + T(y) = \theta_v + \theta_v = \theta_v$ (\because by definition of T) $T(\alpha x) = \theta_v$ _____(2) $T(\alpha x) = \alpha \ \theta_v = \theta_v$ _____(4) From (1),(2),(3) and (4) $T: V_3 \rightarrow V_2$ linear map. Note:- the map T: U \rightarrow V define by T (u) = θ_v is called zero map.

Example:- Prove that the map T: U \rightarrow U define by T (u) = u linear map. Solution:- Let α be any scalar and $x, y \in U$ Now T(x + y) = x + y _____(1) (\because by definition of T) Now T(x) + T(y) = x + y (\because by definition of T) $T(\alpha x) = \alpha x$ _____(2) T(αx) = αx _____(3) $\alpha T(x) = \alpha x = \alpha x$ _____(4) From (1) ,(2),(3) and (4) T: U \rightarrow U linear map. **Note:**- the map T: U \rightarrow U define by T (u) = u is called identity map.

Example:- Prove that the map T: $V_2 \rightarrow V_2$ define by T $(x_1, x_2) = (x_1, -x_2)$ linear map.

Solution:- Let α be any scalar and $x, y \in V_2$ where $x = (x_1, x_2)$ and $y = (y_1, y_2)$

 $\therefore x + y = (x_{1}, x_{2}) + (y_{1}, y_{2}) = (x_{1} + y_{1}, x_{2} + y_{2})$ And $\alpha x = (\alpha x_{1}, \alpha x_{2})$ Now $T(x + y) = T(x_{1} + y_{1}, x_{2} + y_{2})$ $= (x_{1} + y_{1}, -x_{2} - y_{2}) (1)$ (\because by definition of T) Now $T(x) + T(y) = T(x_{1}, x_{2}) + T(y_{1}, y_{2})$ $= (x_{1} - x_{2}) + (y_{1} - y_{2}) (\because$ by definition of T) $= (x_{1} + y_{1}, -x_{2} - y_{2}) (2)$ $T(\alpha x) = T(\alpha x_{1}, \alpha x_{2}) = (\alpha x_{1}, -\alpha x_{2})$ $= \alpha (x_{1}, -x_{2}) (3)$ $\alpha T(x) = \alpha T (x_{1}, x_{2}) = \alpha (x_{1}, -x_{2}) (4)$ From (1),(2),(3) and (4) $T: V_{2} \rightarrow V_{2}$ linear map.

Note:- the map T: $V_2 \rightarrow V_2$ define by T $(x_1, x_2) = (x_1, -x_2)$ is called the reflection in the x_1 -axis.

Figure

Example: Prove that the map D: $\mathcal{F}^{(1)}(a,b) \rightarrow \mathcal{F}^{(1)}(a,b)$ define by D (*f*) = *f* ' linear map. Where is the derivative of *f*.

Solution: Let α be any scalar and $f, g \in \mathcal{C}^{(1)}(a,b)$

Now T(f + g) = (f + g)'= f' + g'____(1)

Now T(f) + T(g) = f' + g' ____(2)

(:: by definition of T)

(:: by definition of T)

$$T(\alpha f) = (\alpha f)' = \alpha (f)'$$
(3)

$$\alpha T(f) = \alpha (f)'$$
(4)
From (1),(2),(3) and (4)
D: $\mathcal{G}^{(1)}(a,b) \rightarrow \mathcal{G}^{(1)}(a,b)$ linear map.

Example:- Prove that the map D: $\mathcal{F}^{(1)}(a,b) \to \mathbb{R}$ define by $\mathcal{J}(f) = \int_{-\infty}^{\infty} f(x) dx$

linear map. **Solution:-** Let α be any scalar and $f, g \in \mathcal{F}^{(1)}(a,b)$

Now T(f + g) =
$$\int_{a}^{b} (f(x) + g(x))dx$$

= $\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$ (1)
(:: by definition of T)

Now T(f) + T(g) =
$$\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
 ____(2)

(:: by definition of T)

$$T(\alpha f) = \int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx$$
(3)
$$\alpha T(f) = \alpha \int_{a}^{b} f(x) dx$$
(4)
From (1),(2),(3) and (4)
D: $\mathcal{F}^{(1)}(a,b) \rightarrow \mathbb{R}$ linear map.

Example:- Prove that the map T: U \rightarrow U define by T (x) = x + u₀ is not linear map. Where u_0 is a fixed vector in U.

Solution: Let α be any scalar and $x, y \in U$

Now
$$T(x + y) = x + y + u_0$$
 (1)
(\because by definition of T)
Now $T(x) + T(y) = x + u_0 + y + u_0$ (\because by definition of T)
(2)

From (1) and (2) \therefore T(x + y) \neq T(x) + T(y) T: U \rightarrow U is not linear map.

Note:- the map T: U \rightarrow U define by T (x) = x + u₀ is called translation by the vector u_0 . Where u_0 is a fixed vector in U.

• The function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x + a ('a' fixed) is called a linear function, because its graph in *xy*-plane is straight line. But it is not a linear map from the vector space V₁ to itself.

Theorem:- let T: U \rightarrow V be a linear map, then

(a) $T(0_u) = 0_v$

(b)
$$T(-u) = -T(u)$$

(c) $T(\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \dots + \alpha_n u_n)$ = $\alpha_1 T(u_1) + \alpha_2 T(u_2) + \alpha_3 T(u_3) + \dots + \alpha_n T(u_n).$

i.e. A linear map T transforms the zero vector of U into the zero vector of V and negative of every u of U into the negative of T(u) of V.

Proof:- (a)
$$T(0_u) = T(0.u)$$
 $[\because 0.u = 0, u \in U]$ $= 0T(u)$ $[\because T \text{ is linear}]$ $= 0_v$ $[\because (-1).u = -u, u \in U]$

$$= (-1)T(u) \qquad [\because T \text{ is linear}]$$

$$=-T(u)$$
(c) This result can be proved by mathematical induction.
Let p(n): $T(\alpha_1u_1 + \alpha_2u_2 + \alpha_3 u_3 + ...+ \alpha_n u_n)$

$$= \alpha_1 T(u_1) + \alpha_2 T(u_2) + \alpha_3 T(u_3) + ...+ \alpha_n T(u_n).$$
Then p(1): $T(\alpha_1u_1) = \alpha_1 T(u_1)$
Since T is linear this is obviously true.
So the result is true for n =1.
Assume that p(k) to be true
i.e. p(k): $T(\alpha_1u_1 + \alpha_2u_2 + \alpha_3 u_3 + ...+ \alpha_n u_k)$

$$= \alpha_1 T(u_1) + \alpha_2 T(u_2) + \alpha_3 T(u_3) + ...+ \alpha_n T(u_k). \text{ is true.}$$
We try to establish the result for n =k + 1
 $T(\alpha_1u_1 + \alpha_2u_2 + \alpha_3 u_3 + ...+ \alpha_{k+1}u_{k+1})$

$$= \alpha_1 T(u_1) + \alpha_2 T(u_2) + \alpha_3 T(u_3) + ...+ \alpha_{k+1} T(u_{k+1}).$$
By the hypothesis and linearity of T.
Since (i) p(1) is true.
(ii) p(k) $\Rightarrow p(k+1)$
The result is true for all n.

Theorem:- A linear transformation T is completely determined by the values of elements of a basis. Precisely, if $B=\{u_1, u_2, ..., u_n\}$ is a basis for U and $v_1, v_2, ..., v_n$ be n vectors (not necessarily distinct) in V, then there exists a unique linear transformation T:U \rightarrow V such that $T(u_i) = v_i$ for i=1,2,...,n.

Proof:- Let $u \in U$. since $B = \{ u_1, u_2, ..., u_n \}$ is a basis for U ,any vector u in U can be written as a unique linear combination of basis elements. Hence there exist scalars $\alpha_1, \alpha_2, ..., \alpha_n$ satisfying

 $\mathbf{u} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \ldots + \alpha_n \mathbf{u}_n.$

We define mapping T: U \rightarrow V by T(u)= $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$.

We prove the following facts:

- (i) T is linear transformation.
- (ii) $T(u_i) = v_i$
- (iii) Such mapping T is unique.

Proof of (i):- Let $u, v \in U$. Then there are scalars $\alpha_1, \alpha_2, ..., \alpha_n$ and $\beta_1, \beta_2, ..., \beta_n$ for which

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n.$$

$$v = \beta_1 u_1 + \beta_2 u_2 + \ldots + \beta_n u_n.$$

$$u + v = (\alpha_1 + \beta_1) u_1 + (\alpha_2 + \beta_2) u_2 + \ldots + (\alpha_n + \beta_n) u_n$$

By definition of T

$$T(u) = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n.$$

 $\mathbf{T}(\mathbf{v}) = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \ldots + \beta_n \mathbf{v}_n.$ $T(\mathbf{u}+\mathbf{v}) = (\alpha_1 + \beta_1) \mathbf{v}_1 + (\alpha_2 + \beta_2) \mathbf{v}_2 + \ldots + (\alpha_n + \beta_n) \mathbf{v}_n$ It is clear that T(u+v) = T(u) + T(v)Also we can easily show that $T(\alpha u) = \alpha T(u)$ For every scalar α and every vector $u \in U$. This establishes that T is a linear transformation from U to V. (ii) Now $u_i \in B$, i=1,2,...,nSo, u_i can be expressed in terms B as $u_i = 0.u_1 + 0.u_2 + 0.u_3 + \dots + 0.u_n$ $T(u_i) = 0.v_1 + 0.v_2 + 0.v_3 + \dots + 0.v_n$ $= v_i, i = 1, 2, 3, ..., n.$ (iii) Let S: $U \rightarrow V$ be any other linear transformation define by $S(u_i) = v_i$ i = 1, 2, 3, ..., n. Now $S(u) = S(\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n)$ $= \alpha_1 \mathbf{S}(\mathbf{u}_1) + \alpha_2 \mathbf{S}(\mathbf{u}_2) + \alpha_3 \mathbf{S}(\mathbf{u}_3) + \dots + \alpha_n \mathbf{S}(\mathbf{u}_n).$ $= \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n$ = T(u). \therefore S(u) = T(u). This proved that such mapping T is unique.

Example: If T is a linear transformation from $V_2 \rightarrow V_2$ define by

T(2,1) = (3,4)T(-3,4) = (0,5)

then express (0, 1) as a linear combination of (2, 1) and (-3, 4). Hence find image of (0, 1) under T.

Solution: Let $(0, 1) = \alpha (2, 1) + \beta (-3, 4)$

 $\therefore (2\alpha - 3\beta, \alpha + 4\beta) = (0, 1)$ $\therefore 2\alpha - 3\beta = 0, \alpha + 4\beta = 1$

Solving these equation then we get $\alpha = \frac{3}{11}$, $\beta = \frac{2}{11}$

$$\therefore (0, 1) = \frac{3}{11} (2, 1) + \frac{2}{11} (-3, 4).$$

$$\therefore T(0, 1) = T(\frac{3}{11} (2, 1) + \frac{2}{11} (-3, 4))$$

= $\frac{3}{11} T(2, 1) + \frac{2}{11} T(-3, 4)$
= $\frac{3}{11} (3, 4) + \frac{2}{11} (0, 5) = \frac{1}{11} (9, 22)$
Thus we get T(0, 1) = $\frac{1}{11} (9, 22)$

Example:- If T is a linear transformation from $R^3 \rightarrow R^3$ define by

T (e₁) = e₁ + e₂ + e₃, T (e₂) = e₂ + e₃ and T(e₃) = e₂ - e₃ where e₁, e₂, e₃ are unit vector of \mathbb{R}^3 . Then (i)Determine the transformation of (2, -1, 3) And (ii)describe explicitly the linear transformation T. **Solution:** Since e_1, e_2, e_3 are unit vector of \mathbb{R}^3 \therefore e₁ =(1, 0, 0),e₂ =(0, 1, 0), e₃ =(0, 0, 1) We have T (e₁) = e₁ +e₂ +e₃ \Rightarrow T(1, 0, 0) = (1, 0, 0) +(0, 1, 0) +(0, 0, 1) =(1, 1, 1) $T(e_2) = e_2 + e_3 \Rightarrow T(0, 1, 0) = (0, 1, 0) + (0, 0, 1)$ =(0, 1, 1) $T(e_3) = e_2 - e_3 \Rightarrow T(0, 0, 1) = (0, 1, 0) - (0, 0, 1)$ = (0, 1, -1)Since e_1 , e_2 , e_3 form basis for \mathbb{R}^3 . \therefore every vector of R³ can be uniquely expressed as a linear combination of e₁, e₂, e₃. (i) Now $(2, -1, 3) = 2(1, 0, 0) + (-1)(0, 1, 0) + 3(0, 0, 1) = 2e_1 + (-1)e_2 + 3e_3$ \therefore T(2, -1, 3) = 2T(e₁)+(-1)T(e₂)+3T(e₃) = 2(1, 1, 1) + (-1)(0, 1, 1) + 3(0, 1, -1)=(2, 4, -2) $(x, y, z) \in \mathbb{R}^3$. (ii) Now $(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = xe_1 + ye_2 + ze_3$ \therefore T(x, y, z) = xT(e₁) +yT(e₂) +zT(e₃) = x (1, 1, 1) + y (0, 1, 1) + z (0, 1, -1)= (x, x + y + z, x + y - z) $\therefore \mathbf{T}(x, y, z) = (x, x + y + z, x + y - z)$

Which is require linear transformation T.

Range and Kernel of a Linear map

Definition:-Kernel of a Linear map (null space)

Let T: $U \rightarrow V$ be a linear map. The Kernel (null space) of T is the set $N(T) = \{u \in U/T(u) = 0\}$. It is denoted as kerT.

OR N(T) is the set of all those elements in U that are mapped by T into the zero of V.

Definition:- Range of a Linear map (null space)

Let T: $U \rightarrow V$ be a linear map. The range of T is the set $R(T) = \{T(u) \in V / u \in U \}$. It is denoted as kerT.

Example: Let T: $V_3 \rightarrow V_3$ be a linear map define by $T(x_1, x_2, x_3) = (x_1, x_2, 0)$ Find N(T) & R(T) (OR) Find the range and kernel of T.

Solution:- Here $R(T) = \{(x_1, x_2, 0) | x_1, x_2 \in R\}$

R(T) is x_1x_2 plane. T is not onto. Since R(T) is a subset of co domain V_3 . T is not one-one. Since different vectors (1,0,2) and (1,0,5) have the same image (1,0,0). $N(T) = x_3$ -axis. Since any vector $(0,0, x_3)$ on the x_3 -axis will be taken onto zero to vector of V_3 . **Example:** Let T: U \rightarrow U be an identity linear map then find N(T) & R(T). (OR) Find the range and kernel of T. **Solution:** Here T: $U \rightarrow U$ be an identity linear map. i.e. T(u) = u for $u \in U$. This is one – one and onto linear map. \therefore R(T) = U and N(T) = 0 **Example:** Let T: U \rightarrow U be zero linear map then find N(T) & R(T). (OR) Find the range and kernel of T. **Solution:** Here T: $U \rightarrow U$ be zero linear map. i.e. T(u) = 0 for $u \in U$. This is not one – one and onto linear map. \therefore R(T) = 0 and N(T) = U **Example:**-Let T: $V_3 \rightarrow V_2$ be a linear map define by T $(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_3)$ then find N(T) & R(T) (OR) Find the range and kernel of T. . Solution:- Here T: $V_3 \rightarrow V_2$ be a linear map define by T $(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_3)$ Let $(a, b) \in V_2$ such that $T(x_1, x_2, x_3) = (a, b)$ \therefore (*x*₁ - *x*₂, *x*₁+*x*₃) = (a, b) :. $x_1 - x_2 = a$, $x_1 + x_3 = b$ Solving these equation then we get $x_2 = x_1 - a, x_3 = b - x_1$ Hence T $(x_1, x_1 - a, b - x_1) = (a, b)$ $\therefore \mathbf{R}(\mathbf{T}) = \mathbf{V}_2$ (:: every vector $(a, b) \in V_2$ in R(T)) So this is onto map. Now for kernel of T T $(x_1, x_2, x_3) = (0, 0)$ \therefore (*x*₁ - *x*₂, *x*₁+*x*₃) = (0, 0) $\therefore x_1 - x_2 = 0, x_1 + x_3 = 0$ Solving these equation then we get $\therefore x_1 = x_2 = -x_3$ i.e. all vectors of the form $(x_l, x_l, -x_l)$ will be mapped into zero. : $N(T) = \{ x_1(1,1,-1) / x_1 \text{ any scalar} \} = [(1,1,-1)]$ **Example:** Let T: $V_2 \rightarrow V_2$ be a linear map define by T $(x_1, x_2) = (x_1, -x_2)$ then find N(T) &

R(T) (OR) Find the range and kernel of T.

. Solution:- Solution:- Here T: $V_2 \rightarrow V_2$ be a linear map define by T $(x_1, x_2) = (x_1, -x_2)$ Let $(a, b) \in V_2$ such that T $(x_1, x_2) = (a, b)$ $\therefore (x_1, -x_2) = (a, b)$ $\therefore x_1 = a, -x_2 = b$ Solving these equation then we get $x_1 = a, x_2 = -b$ Hence T (a, -b) = (a, b) $\therefore R(T) = V_2 \qquad (\because \text{ every vector } (a, b) \in V_2 \text{ in } R(T))$ So this is onto map. Now for kernel of T T $(x_1, x_2) = (0, 0)$ $\therefore (x_1, -x_2) = (0, 0)$ $\therefore x_1 = 0, x_2 = 0$ $\therefore N(T) = (0,0) \}$

Example:- Let the map D: $\mathcal{F}^{(1)}(a,b) \rightarrow \mathcal{F}^{(1)}(a,b)$ define by D (*f*) = *f* ' linear map. Where is the derivative of *f*. then find N(T) & R(T). (OR) Find the range and kernel of T.

Solution:- Since every continuous function g on (a, b) possesses an antiderivative. hence D is an onto map. $\therefore R(D) = \mathcal{F}^{(1)}(a,b)$. And N(D) is the set of all constant functions in $\mathcal{F}^{(1)}(a,b)$.

Example:- Let the map D: $\mathcal{F}^{(1)}(a,b) \to \mathbb{R}$ define by $\mathcal{J}(f) = \int_{a}^{b} f(x) dx$ linear map. Where is the derivative of *f*. then find N(T) & R(T). (OR) Find the range and kernel of T.

Solution:- Since every real number can be obtained as the algebraic area under some curve y = f(x) from a to b. hence D is an onto map. $\therefore R(D) = R$. And it is difficult to say anything about kernel i.e. N(D).

Note :- From above example we see that if T is one-one when N(T) is the zero subspace and conversely.

Theorem:- Let T: $U \rightarrow V$ be a linear map. Then

- (a) R(T) is a subspace of V.
- (b) N(T) is subspace of U.
- (c) T is one-one iff N(T) is the zero subspace, $\{0_U\}$, of U.
- (d) If $[u_1, u_2, ..., u_n] = U$, then $[T(u_1), T(u_2), ..., T(u_n)]$
- (e) If U is finite- dimensional, then $\dim R(T) \le \dim U$.

Proof: (a) we want to prove that R(T) is a subspace of V.

For this, let $v_1, v_2 \in R(T)$ such that $T(u_1) = v_1$ and $T(u_2) = v_2$ for $u_1, u_2 \in U$. Now $v_1 + v_2 = T(u_1) + T(u_2) = T(u_1 + u_2)$ [$\because T: U \rightarrow V$ be a linear map] Since U is a vector space. $\therefore u_1 + u_2 \in U$

And T: $U \rightarrow V$ be a linear map \therefore T(u₁ + u₂) = v₁ + v₂ \in R(T) Similarly, $\alpha v_1 \in R(T)$ then $\alpha v_1 = \alpha T(u_1) = T(\alpha u_1) \in R(T)$. Thus R(T) is a subspace of V. (b) we want to prove that N(T) is a subspace of U. For this, let $u_1, u_2 \in N(T)$ such that $T(u_1) = 0_v$ and $T(u_2) = 0_v$ for $u_1, u_2 \in U$. $[::T:U \rightarrow V$ be a linear map] Now $T(u_1 + u_2) = T(u_1) + T(u_2) = 0_v$ \therefore T(u₁ + u₂) = 0_v \therefore $u_1 + u_2 \in N(T)$ Similarly, for any scalar $\alpha T(\alpha u_1) = \alpha T(u_1) = \alpha 0_v = 0_v \in N(T)$. $\therefore \alpha u_1 \in N(T)$ Thus N(T) is a subspace of V. (c) Suppose T is one-one. We want to prove that N(T) is the zero subspace, $\{0_U\}$, of U. Since T is one-one then $T(u) = T(v) \Rightarrow u = v$ If $u \in N(T)$ then $T(u) = 0_v = T(0_U)$. $\therefore u = 0_{II}$ i.e. no nonzero vector u of U can belong to N(T). Since O_{II} in any case belongs to N(T). i.e. N(T) contains only 0_U and nothing else. Hence, N(T) is the zero subspace, $\{0_{II}\}$, of U. Conversely, Suppose $N(T) = \{0_{II}\}\$ We want to prove that T is one-one. i.e. We want to prove that $T(u) = T(v) \Rightarrow u = v$ suppose T(u) = T(v)then $T(u-v) = T(u) - T(v) = 0_v$. \therefore u – v \in N(T) = {0_U} \therefore u – v = 0₁₁. i.e. u = vi.e. T is one-one. let $[u_1, u_2, ..., u_n] = U$ (d) u∈U then u can be expressed as a linear combination of vectors u_1, u_2, \dots, u_n . The $T(u_1), T(u_2), \dots, T(u_n)$ are in R(T). So $[T(u_1), T(u_2), ..., T(u_n)] \subset R(T)$. Let $v \in R(T)$. Then there exists a vector $u \in U$ such that T(u) = v. Since $u \in U = [u_1, u_2, \dots, u_n]$, we have $\mathbf{u} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \ldots + \alpha_n \mathbf{u}_n$. $\mathbf{v} = \mathbf{T}(\mathbf{u}) = \mathbf{T}(\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \ldots + \alpha_n \mathbf{u}_n)$ $= \alpha_1 T(u_1) + \alpha_2 T(u_2) + \alpha_3 T(u_3) + \ldots + \alpha_n T(u_n).$ So $v \in [T(u_1), T(u_2), ..., T(u_n)].$ This proves that $R(T) = [T(u_1), T(u_2), \dots, T(u_n)].$

(e) Let U be finite dimensional and dim U = n. So there can be at most n LI vectors in U. Let { $u_1, u_2, ..., u_n$ } be the basis of U. Then R(T) = [T(u_1),T(u_2),...,T(u_n)] So that there can't be more than n LI vectors inR(T). So dimR(T)= n ≤ dimU.

Definition:- Rank of T:-

Let T: $U \rightarrow V$ be a linear map. Then If R(T) is finite- dimensional, the dimension of R(T) (i.e.dimR(T)) is called the rank of T and is denoted by r(T).

Definition:- nullity of T:-

Let T: $U \rightarrow V$ be a linear map. Then If N(T) is finite- dimensional, the dimension of N(T) (i.e.dimN(T)) is called the nullity of T and is denoted by n(T).

Rank and Nullity

Theorem: Let T: $U \rightarrow V$ be a linear map. Then

- (a) If T is one-one and $u_1, u_2, ..., u_n$. are linearly independent vectors of U, then $T(u_1), T(u_2), ..., T(u_n)$ are LI.
- (b) If $v_1, v_2, ..., v_n$ are linearly independent vectors of R(T) and $u_1, u_2, ..., u_n$ are vectors of U such that $T(u_1) = v_1, T(u_2) = v_2, ..., T(u_n) = v_n$ then $u_1, u_2, ..., u_n$. are linearly independent.
- **Proof**:- (a) Let T is one-one and $\{u_1, u_2, ..., u_n\}$ are linearly independent vectors in U. We want to prove that $T(u_1), T(u_2), \dots, T(u_n)$ are LI. Consider $\alpha_1 T(u_1) + \alpha_2 T(u_2) + \alpha_3 T(u_3) + \ldots + \alpha_n T(u_n) = 0_v$ $\therefore T(\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n) = 0_v \qquad [\because T \text{ is linear map}]$ Also $T(0_u) = 0_v$ Since T is one-one is given. $\therefore \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \ldots + \alpha_n \mathbf{u}_n = \mathbf{0}_u$ Since u_1, u_2, \ldots, u_n . are linearly independent vectors of U is given. $\therefore \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$ Thus $T(u_1), T(u_2), \dots, T(u_n)$ are LI. Since v_1, v_2, \ldots, v_n are linearly independent vectors in V (b) and $T(u_1) = v_1$, $T(u_2) = v_2$, ..., $T(u_n) = v_n$ where $u_1, u_2, ..., u_n \in U$ is given. We want to prove that u_1, u_2, \dots, u_n are linearly independent. Consider $\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n = 0$ $\therefore T(\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n) = 0_{\nu} \quad [\because T \text{ is linear map}]$ $\therefore \alpha_1 T(u_1) + \alpha_2 T(u_2) + \alpha_3 T(u_3) + \ldots + \alpha_n T(u_n) = 0_v$

Since
$$T(u_1), T(u_2), \dots, T(u_n)$$
 are LI

$$\therefore \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$$

Hence u_1, u_2, \ldots, u_n . are linearly independent vectors in U.

Theorem:- (Rank and Nullity Theorem):

Let T: $U \rightarrow V$ be a linear map and U a finite dimensional vector space. Then prove that

 $\dim R(T) + \dim N(T) = \dim U.$ i.e $r(T) + n(T) = \dim U$ (or) rank + nullity = dimension of the domain space.Proof:- N(T) is a subspace of a finite dimensional vector space U. Then N(T) must be finite dimensional. Let dim N(T) = n(T) = n and dim U = p. So, $n \le p$ Let the basis for N(T) be $\{u_1, u_2, \dots, u_n\}$. \therefore { u₁, u₂,..., u_n} are linearly independent vectors in N(T) \therefore {u₁,u₂,...,u_n} are linearly independent vectors in U. Now extend this set of n linearly independent vectors of U to the basis for u. So we find the vectors $u_{n+1}, u_{n+2}, \ldots, u_n$ So that the enlarged set { u_1, u_2, \dots, u_n , $u_{n+1}, u_{n+2}, \dots, u_p$ } is a basis for U. Since this set of p vectors generate vector space U. $R(T) = [T(u_1), T(u_2), \dots, T(u_p)]$ But $u_i \in N(T)$, i = 1, 2, 3, ..., n. Hence $T(u) = 0_v$, i = 1, 2, 3, ..., n. $\therefore R(T) = [T(u_{n+1}), T(u_{n+2}), \dots, T(u_p)]$ Now we shall prove that $A = \{ T(u_{n+1}), T(u_{n+2}), \dots, T(u_p) \}$ is basis for R(T). Since we already proved that $R(T) = [T(u_{n+1}), T(u_{n+2}), \dots, T(u_p)]$ So we have only prove that A is LI set. Let us consider $\alpha_{n+1} T(\mathbf{u}_{n+1}) + \alpha_{n+2} T(\mathbf{u}_{n+2}) + \ldots + \alpha_p T(\mathbf{u}_p) = 0$ $\therefore T[\alpha_{n+1}u_{n+1} + \alpha_{n+2}u_{n+2} + ... + \alpha_n u_n] = 0$ Since T is linear $\alpha_{n+1}\mathbf{u}_{n+1} + \alpha_{n+2}\mathbf{u}_{n+2} + \ldots + \alpha_p \mathbf{u}_p \in \mathbf{N}(\mathbf{T}).$ But N(T) has a basis $\{u_1, u_2, \dots, u_n\}$ so $\alpha_{n+1}u_{n+1} + \alpha_{n+2}u_{n+2} + \ldots + \alpha_p u_p$ which is the elements of N(T) can be expressed as a linear combination of basis $\{u_1, u_2, \dots, u_n\}$ of N(T). : there exists scalars $\alpha_1, \alpha_2, \dots, \alpha_n$ such that $\alpha_{n+1}\mathbf{u}_{n+1} + \alpha_{n+2}\mathbf{u}_{n+2} + \ldots + \alpha_n\mathbf{u}_p = \alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2 + \ldots + \alpha_n\mathbf{u}_n$ $\therefore \alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n + (-1) \alpha_{n+1} u_{n+1} + (-1) \alpha_{n+2} u_{n+2} + \ldots + (-1) \alpha_n u_p = 0$ Since $\{u_1, u_2, \dots, u_p\}$ is a basis for t vector space U this set is LI. So $\alpha_{n+1} = \alpha_{n+2} = \ldots = \alpha_n = 0$ This prove that set A is LI. \therefore A = { T(u_{n+1}), T(u_{n+2}),...,T(u_p)} is basis for R(T). Dim R(T) = number of elements in basis A= p - n

 $= \dim U - \dim N(T)$

Hence rank + nullity = dimension of the domain space.

Example:- Prove that the linear map T : $V_3 \rightarrow V_3$ define by T $(e_1) = e_1 - e_2$, T $(e_2) = 2e_2 + e_3$ and T $(e_3) = e_1 + e_2 + e_3$ is neither one-one nor onto. **Solution:-** Here R(T) = [T (e_1) , T (e_2) , T (e_3)] = $[e_1 - e_2, 2e_2 + e_3, e_1 + e_2 + e_3]$

= $[e_1 - e_2, 2e_2 + e_3]$ Since $e_1 + e_2 + e_3$ is linear combination of $e_1 - e_2$, $2e_2 + e_3$ R(T) has dimension 2. $R(T) \neq V_3$ \therefore T is not onto. Since N(T) consists those vectors $(x_1, x_2, x_3) \in V_3$ such that T $(x_1, x_2, x_3) = 0$. i.e $T(x_1e_1 + x_2e_2 + x_3e_3) = 0$ $\therefore x_1 T(e_1) + x_2 T(e_2) + x_3 T(e_3) = 0$ $\therefore x_1 (e_1 - e_2) + x_2 (2e_2 + e_3) + x_3 (e_1 + e_2 + e_3) = 0$ $\therefore x_1 + x_3 = 0$, $-x_1 + 2x_2 + x_3 = 0$ and $x_2 + x_3 = 0$ Solving these equation then we get $x_1 = x_2 = -x_3$: $N(T) = \{ (x_1, x_1, -x_1) / x_1 \text{ an arbitrary scalar} \} = [(1, 1, -1)].$ \therefore N(T) is not the zero subspace of V₃. Hence T is not one-one. **Example:** Let linear map T : $V_4 \rightarrow V_3$ define by T (e_1) =(1, 1, 1), T (e_2) = (1, -1, 1), T(e_3) = (1, 0, 0) and $T(e_4) = (1, 0, 1)$ then verify that $r(T) + n(T) = \dim U(=V_4) = 4$. **Solution:**- Here $R(T) = [T(e_1), T(e_2), T(e_3), T(e_4)]$ \therefore R(T) = [(1, 1, 1), (1, -1, 1), (1, 0, 0), (1, 0, 1)] (1, 1, 1), (1, -1, 1), (1, 0, 0), (1, 0, 1) is LD, because a set of four vectors of V₃ $(\dim V_3 = 3)$ is always LD. Now find that $(1, 0, 1) = \frac{1}{2}(1, 1, 1) + \frac{1}{2}(1, -1, 1) + 0(1, 0, 0)$ Hence we discard the vector (1, 0, 1) so that R(T) = [(1, 1, 1), (1, -1, 1), (1, 0, 0)]Now check R(T) is LI. Let $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ such that $\alpha_1(1, 1, 1) + \alpha_2(1, -1, 1) + \alpha_3(1, 0, 0) = 0$ $\therefore (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 - \alpha_2, \alpha_1 + \alpha_2) = 0$ $\therefore \alpha_1 + \alpha_2 + \alpha_3 = 0, \alpha_1 - \alpha_2 = 0, \alpha_1 + \alpha_2 = 0$ From above equations we get $\alpha_1 = \alpha_2 = \alpha_3 = 0$ Hence $\{(1, 1, 1), (1, -1, 1), (1, 0, 0)\}$ is LI. $\therefore \dim R(T) = r(T) = 3$ Now we find N(T). Let us suppose that T(u) = 0 for $u \in V_4$ where $u = (x_1, x_2, x_3, x_4)$, Now $u = x_1 e_{1+} x_2 e_2 + x_3 e_3 + x_4 e_4$ \therefore T(u) = T($x_1e_{1+}x_2e_2+x_3e_3+x_4e_4$) = 0 $\therefore x_1 T(e_1) + x_2 T(e_2) + x_3 T(e_3) = 0$ $\therefore x_1 [(1, 1, 1) + x_2 (1, -1, 1) + x_3 (1, 0, 0) + x_4 (1, 0, 1) = 0$ $\therefore x_1 + x_2 + x_3 + x_4 = 0$, $x_1 - x_2 = 0$ and $+ x_1 + x_2 + x_4 = 0$ Solving these equation then we get $x_1 = x_2 = -x_4/2$, $x_3 = 0$ \therefore N(T) = { ($x_1, x_1, 0, -2x_1$)/ x_1 an arbitrary scalar} = [(1, 1, 0, -2)]. $\therefore \dim N(T) = n(T) = 1$ Hence $r(T) + n(T) = 3 + 1 = 4 = \dim U(=V_4)$

```
Definition:- Nonsingular or Isomorphism :
```

A linear map $T: U \rightarrow V$ is said to be nonsingular if it is one – one and onto. Such a map is also called an isomorphism.

Definition:- Inverse function:

Any function is called inverse function iff it is one – one and onto.

Note: a linear transformation is Nonsingular iff it has an inverse.

Example: Define a linear map $T : V_2 \rightarrow V_2$ by $T(x_1, x_2) = (x_1, -x_2)$. Prove that this map is Nonsingular.

Solution:- Here the linear map $T : V_2 \rightarrow V_2$ define by $T(x_1, x_2) = (x_1, -x_2)$

```
Now for N(T)

T(x_1, x_2) = 0
```

```
\therefore (x_1, -x_2) = 0
\therefore x_1 = 0 \text{ and } x_2 = 0
```

```
N(T) = 0
```

N(1) = 0. This linear map T is one

 \therefore This linear map T is one – one.

Now for R(T)

For every $(y_1, y_2) \in V_2$ then there exists $(x_1, x_2) \in V_2$ such that

 $T(x_1, x_2) = (y_1, y_2)$:. $(x_1, -x_2) = (y_1, y_2)$

$$\therefore (x_1, -x_2) = (y_1, y_2)$$

 $\therefore x_1 = y_1 \text{ and } x_2 = y_2$

$$\therefore x_1 - y_1 \text{ and } x_2$$

 $\therefore \mathbf{P}(\mathbf{T}) - \mathbf{V}$

 $\therefore \mathbf{R}(\mathbf{T}) = \mathbf{V}_2$

This linear map T is onto π^{-1}

$$\therefore T^{-1}(y_1, y_2) = (y_1, -y_2)$$

 \therefore it has inverse

 \therefore This map is Nonsingular.

Example:- Prove that a linear map T: U \rightarrow U define by T (u) = u is Nonsingular. (OR)Prove that an identity linear map is one-one and onto.

```
(OR) Find the inverse of a linear map T: U \rightarrow U define by T(u) = u.
Solution:- Here the linear map T: U \rightarrow U define by T(u) = (u)
```

Now for N(T) T(u) = 0 $\therefore u = 0$ $\therefore N(T) = 0$ $\therefore This linear map T is one - one.$ Now for R(T) For every $(y) \in U$ then there exists $(u) \in U$ such that T(u) = (y) $\therefore (u) = (y)$ $\therefore R(T) = U$ This linear map T is onto $\therefore T^{-1}(y) = (y).$ \therefore it has inverse \therefore This map is Nonsingular.

Example: Prove that a linear map $T: \mathcal{P}_2 \to V_3$ define by $T(\alpha_0 + \alpha_1 x + \alpha_2 x^2) = (\alpha_0, \alpha_1, \alpha_2)$ is Nonsingular. OR Prove that a linear map $T: \mathcal{P}_2 \to V_3$ define by $T(\alpha_0 + \alpha_1 x + \alpha_2 x^2) = (\alpha_0, \alpha_1, \alpha_2)$ is isomorphism.

Solution:- Here the linear map T : $\mathcal{P}_2 \rightarrow V_3$ define by T $(\alpha_0 + \alpha_1 x + \alpha_2 x^2) = (\alpha_0, \alpha_1, \alpha_2)$

Now for N(T) $T(\alpha_{0} + \alpha_{1}x + \alpha_{2}x^{2}) = 0$ $\therefore (\alpha_{0}, \alpha_{1}, \alpha_{2}) = 0$ $\therefore \alpha_{0} = \alpha_{1} = \alpha_{2} = 0$ $\therefore N(T) = 0$ $\therefore This linear map T is one - one.$ Now for R(T) For every $(\beta_{1}, \beta_{2}, \beta_{3}) \in V_{3}$ then there exists $(\beta_{1} + \beta_{2}x + \beta_{3}x^{2}) \in \mathscr{P}_{2}$ such that $T(\beta_{1} + \beta_{2}x + \beta_{3}x^{2}) = (\beta_{1}, \beta_{2}, \beta_{3})$ $\therefore (\beta_{1}, \beta_{2}, \beta_{3}) \text{ is image of T.}$ $\therefore R(T) = V_{3}$ This linear map T is onto $\therefore T^{-1}(\beta_{1}, \beta_{2}, \beta_{3}) = (\beta_{1} + \beta_{2}x + \beta_{3}x^{2}).$ $\therefore \text{ it has inverse}$

 \therefore This map is Nonsingular.

Theorem:- Let $T: U \rightarrow V$ be nonsingular linear map. Then $T^{-1}: V \rightarrow U$ is a linear, one – one and onto map.

Proof:- First to prove that T^{-1} is linear.

Let $v_1, v_2 \in V$. Let $T^{-1}(v_1) = u_1$ and $T^{-1}(v_2) = u_2$ for $u_1, u_2 \in U$. Since T is nonsingular linear map \therefore T is one – one and onto map. \therefore u_1 and u_2 exists uniquely. \therefore $v_1 = T(u_1)$ and $v_2 = T(u_2)$ \therefore $v_1 + v_2 = T(u_1) + T(u_2) = T(u_1 + u_2)$ [\because T is linear] \therefore $T^{-1}(v_1 + v_2) = u_1 + u_2 = T^{-1}(v_1) + T^{-1}(v_2)$ \therefore we get $T^{-1}(v_1 + v_2) = T^{-1}(v_1) + T^{-1}(v_2)$ Also $\alpha v_1 = \alpha T(u_1) = T(\alpha u_1)$ $\therefore T^{-1}(\alpha v_1) = \alpha u_1 = \alpha T^{-1}(v_1)$ i.e. $T^{-1}(\alpha v_1) = \alpha T^{-1}(v_1)$ \therefore T⁻¹ is linear. Now we want to prove that T^{-1} is one-one. Let $v_1, v_2 \in V$ such that $T^{-1}(v_1) = T^{-1}(v_2) = u$ say for $u \in U$.

 \Rightarrow $v_1 = v_2 = T(\mathbf{u})$ Since image of u under T is unique. $\therefore v_1 = v_2$ Thus we get $T^{-1}(v_1) = T^{-1}(v_2) \Rightarrow v_1 = v_2$. \therefore T⁻¹ is one-one. Now we want to prove that T^{-1} is onto. Given any element $u \in U$ then there exists an element $v \in V$ such that T(u) = v. $\therefore u = \mathbf{T}^{-1}(v)$ This show that T^{-1} is onto. \therefore T⁻¹: V \rightarrow U is a linear, one – one and onto map. **Example:**- Check that a linear map $T: U \rightarrow U$, where U is vector space, define by T (x) = T({x₁, x₂, x_{3,...}, x_n, ...}) = { x₂, x_{3,...}, x_n, ...} is Nonsingular or not. Also check the inverse of this linear map is exist or not. **Solution**:- Here the linear map $T: U \rightarrow U$ define by $T({x_1, x_2, x_{3,...,} x_n, ...}) = {x_2, x_{3,...,} x_n, ...}$ Now for N(T)T(x) = 0 \therefore T({ $x_1, x_2, x_{3,...,} x_n, ...$ }) = 0 $\therefore \{x_2, x_3, \dots, x_n, \dots\} = 0$ Here let $x_1 = z$ which may not be zero. \therefore N(T) = {z, 0, 0, 0,} $\therefore N(T) \neq 0$ \therefore This linear map T is not one – one. Now for R(T) For every $(y_1, y_2, y_{3,...}, y_n, ...) \in U$ then there exists $(z, y_1, y_2, y_{3,...}, y_n, ...) \in U$ such that $T(\{z, y_1, y_2, y_{3,...}, y_n, ... \}) = (y_1, y_2, y_{3,...}, y_n, ...)$ \therefore { z, y₁, y₂, y₃, y_n, ... } is pre image of { y₁, y₂, y₃, y_n, ... } $\therefore R(T) = U$ This linear map T is onto Thus we get T is onto but not one-one. \therefore This map is not nonsingular. \therefore Also T has not inverse. **Example:**- Check that a linear map T: U \rightarrow U, where U is vector space, define by T (x) = T({x₁, x₂, x₃, ..., x_n, ...}) = {0, x₁, x₂, x₃, ..., x_n, ...} is Nonsingular or not. Also check the inverse of this linear map is exists or not. **Solution**:- Here the linear map $T: U \rightarrow U$ define by $T(\{x_1, x_2, x_{3,...,} x_n, ...\}) = \{0, x_1, x_2, x_{3,...,} x_n, ...\}$ Now for N(T) T(x) = 0 \therefore T({ $x_1, x_2, x_{3,...,} x_n, ...$ }) = 0 $\therefore \{0, x_1, x_2, x_{3,...}, x_n, ...\} = 0$ \therefore N(T) = {0, 0, 0, 0,}

 $\therefore N(T) = 0$ \therefore This linear map T is one – one. Now for R(T)let $(1, 1, 1, \dots) \in U$ has no pre image in U $\therefore R(T) \neq U$ This linear map T is not onto Thus we get T is not onto but one-one. \therefore This map is not nonsingular. \therefore Also T has not inverse. **Theorem:**- If U and V are finite dimensional vector spaces of the same dimension, then a linear map T: $U \rightarrow V$ is one-one iff it is onto. **Proof:**- T is one –one $\Leftrightarrow N(T) = \{0_{\nu}\}$ \Leftrightarrow n(T) = 0 \Leftrightarrow r(T) = dim U = dim V [:: By Rank and Nullity Theorem i.e $r(T) + n(T) = \dim U$] \Leftrightarrow T is onto. **Example:** Show that the linear map $T: V_3 \rightarrow V_3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_2 + x_3, x_3)$ is nonsingular and find its inverse. **Solution:**- Here the linear map T: V₃ \rightarrow V₃ defined by T(x_1, x_2, x_3) = ($x_1 + x_2 + x_3, x_2 + x_3, x_3$) Now for N(T) $T(x_1, x_2, x_3) = 0$ $(x_1 + x_2 + x_3, x_2 + x_3, x_3) = 0$ $x_1 + x_2 + x_3 = 0, x_2 + x_3 = 0, x_3 = 0$ $\therefore x_1 = 0, x_2 = 0 \text{ and } x_3 = 0$ N(T) = 0 \therefore This linear map T is one – one. Since the dimension of domain space and dimension of co domain space are equal. \therefore T is onto. Thus we get T is one-one and onto. Hence T is nonsingular and the inverse of T exists. i.e.T⁻¹ exists. Now we derive the formula for T^{-1} . Let $T^{-1}(y_1, y_2, y_3) = (x_1, x_2, x_3)$.____(1) $\therefore (y_1, y_2, y_3) = T(x_1, x_2, x_3)$ \therefore (y₁, y₂, y₃) = (x₁ + x₂ + x₃, x₂ + x₃, x₃) $\therefore y_1 = x_1 + x_2 + x_3, y_2 = x_2 + x_3, y_3 = x_3$ Solving these equation then we get $x_1 = y_1 - y_2$, $x_2 = y_2 - y_3$ and $x_3 = y_3$ put the values of x_1 , x_2 , x_3 in equation (1) then we get $T^{-1}(y_1, y_2, y_3) = (y_1 - y_2, y_2 - y_3, y_3)$

Example:- Show that the linear map T : $V_3 \rightarrow V_3$ defined by T $(e_1) = e_1 + e_2$, T $(e_2) = e_2 + e_3$ and T $(e_3) = e_1 + e_2 + e_3$ is nonsingular and find its inverse.

Solution:- First we find the value of T.

Let $(x_1, x_2, x_3) \in V_3$ such

T(
$$x_1$$
, x_2 , x_3) = T($x_1e_1 + x_2 e_2 + x_3 e_3$)
= x_1 T(e_1) + x_2 T (e_2) + x_3 T(e_3)
= x_1 ($e_1 + e_2$) + x_2 ($e_2 + e_3$) + $x_3(e_1 + e_2 + e_3$)
= x_1 (1,1,0) + x_2 (0,1,1) + x_3 (1,1,1)
[\because : Where e_1 = (1,0,0), e_2 = (0,1,1) and e_3 = (0,1,1)]
= ($x_1 + x_3$, $x_1 + x_2 + x_3$, $x_2 + x_3$)
i.e. T(x_1 , x_2 , x_3) = ($x_1 + x_3$, $x_1 + x_2 + x_3$, $x_2 + x_3$)
Now for N(T)
T(x_1 , x_2 , x_3) = 0
($x_1 + x_3$, $x_1 + x_2 + x_3$, $x_2 + x_3$)= 0
 $x_1 + x_3 = 0$, $x_1 + x_2 + x_3 = 0$, $x_2 + x_3 = 0$,
 $\therefore x_1 = 0$, $x_2 = 0$ and $x_3 = 0$
N(T) = 0
 \therefore This linear map T is one – one.

Since the dimension of domain space and dimension of co domain space are equal. \therefore T is onto.

Thus we get T is one-one and onto.

Hence T is nonsingular and the inverse of T exists. i.e.T⁻¹ exists.

Now we derive the formula for T^{-1} .

Let $T^{-1}(y_1, y_2, y_3) = (x_1, x_2, x_3)$.____(1) $\therefore (y_1, y_2, y_3) = T(x_1, x_2, x_3)$ $\therefore (y_1, y_2, y_3) = (x_1 + x_3, x_1 + x_2 + x_3, x_2 + x_3)$ $\therefore y_1 = x_1 + x_3, y_2 = x_1 + x_2 + x_3, y_3 = x_2 + x_3$ Solving these equation then we get $x_1 = y_2 - y_3, x_2 = y_2 - y_1$ and $x_3 = y_1 - y_2 + y_3$ put the values of x_1, x_2, x_3 in equation (1) then we get $T^{-1}(y_1, y_2, y_3) = (y_2 - y_3, y_2 - y_1, y_1 - y_2 + y_3)$ **Consequences of rank nullity theorem**

Definition:-Isomorphic:-

Two vector spaces U and V are said to be isomorphic if there exists an isomorphism from U to V.

If U and V are isomorphic then we write $U \approx V$.

Theorem:- Every real (complex) vector space of dimension p is isomorphic to $V_p(V_p^c)$)

Proof:- Let U be a real vector space of dimension p.

Let $B = \{u_1, u_2, u_{3,...,}u_p\}$ an ordered basis for U. Let $u \in U$ $\therefore u = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_p u_p$ i.e u is linear combination of set B. \therefore the coordinate vector of U relative to B is $\{\alpha_1, \alpha_2, ..., \alpha_p\}$ Now define a mapping T : U $\rightarrow V_p$ by T(u) = $(\alpha_1, \alpha_2, ..., \alpha_p)$ We want to prove that T is linear map. Let $u, v \in U$ where $u = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_p u_p$ and $v = \beta_1 u_1 + \beta_2 u_2 + ... + \beta_p u_p$

$$\therefore u + v = (\alpha_{1} + \beta_{1})u_{1} + (\alpha_{2} + \beta_{2})u_{2} + \dots + (\alpha_{p} + \beta_{p})u_{p}$$
Now $T(u + v) = T((\alpha_{1} + \beta_{1})u_{1} + (\alpha_{2} + \beta_{2})u_{2} + \dots + (\alpha_{p} + \beta_{p})u_{p})$

$$= ((\alpha_{1} + \beta_{1}),(\alpha_{2} + \beta_{2}),\dots,(\alpha_{p} + \beta_{p})) (1) \quad [\because by def^{n} of T]$$
And $T(u) + T(v) = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{p}) + (\beta_{1}, \beta_{2}, \dots, \beta_{p})$

$$= ((\alpha_{1} + \beta_{1}),(\alpha_{2} + \beta_{2}),\dots,(\alpha_{p} + \beta_{p})) (2)$$
From (1) and (2)
$$T(u + v) = T(u) + T(v) (3)$$
Similarly if α is any scalar and $u \in U$ then it can be proved that
$$T(\alpha u) = \alpha T(u) (4)$$
From (3) and (4)
Hence T is linear map.
Now we want to prove that T is one -one.
Let $u \in N(T)$

$$\therefore T(u) = 0_{vp}$$

$$\therefore (\alpha_{1}, \alpha_{2}, \dots, \alpha_{p}) = 0$$

$$\therefore a_{1} = 0, \alpha_{2} = 0, \dots, \alpha_{p} = 0$$

$$\therefore u = 0_{u}$$
N(T) is zero subspace of U.
$$\therefore T is one -one.$$
Also T is onto.
Hence T is an isomorphism from U to V_{p} .
$$\therefore U and V_{p}$$
 are isomorphic i.e $U \approx V_{p}$.