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SEM-V 

MAT 301: Linear Algebra- II (Theory) 

Unit-1 
 

Definition:- Composition of linear maps:- 

 

Let T : U→V and S : V→W be two linear maps. Then the composition SoT : U→W is 

defined by SoT(u) = S(T(u)) for all uU. Here SoT is called the composition of S and T. 

 

Example:- Show that SoT is a linear map. 

Solution:- Let u1,u2U and   is any scalar. Then 

(i) SoT(u1 + u2) = S(T(u1 + u2))             [ by  definition of composition] 

    = S(T(u1) + T(u2))        [T is linear map] 

    = S(T(u1) )+ S(T(u2))        [S is linear map] 

    = SoT(u1) +So T(u2)        [by  definition of composition] 

 

(ii) SoT( u1) = S(T( u1) )            [ by  definition of composition] 

    = S( T(u1)       [T is linear map] 

    =  S(T(u1)        [S is linear map] 

    =   SoT(u1)      [by  definition of composition] 

  

From (i) & (ii) SoT is a linear map 

i.e. The composition of two linear map is again a linear map. 

 

Example:- Let a linear map T : V3→V4 be defined by  

T(e1) = (1, 1, 0, 0) , T(e2) = (1, -1, 1, 0) and T(e3) = (0, -1, 1, 1), where {e1,e2,e3} is the 

standard basis for V3, and let a linear map S : V4→V2 be defined by  

S(f1) = (1,0) , S(f2) = (1, 1), S(f3) = ( 1, -1) and S(f4) = ( 0, 1), where {f1,f2,f3,f4} is the 

standard basis for V4 . Then find SoT: V3→V2. 

Solution:- Since  
SoT(e1) =  S(T(e1)) = S(1, 1, 0, 0) = S(f1 + f2) = S(f1) + S(f2) = (1,0)+ (1, 1)  = (2,1) 

Now  

SoT(e2) =  S(T(e2)) = S(1, -1, 1, 0) = S(f1 - f2 +f3) = S(f1) - S(f2) + S(f3) =  

(1,0) - (1, 1) + ( 1, -1)   = (1,-2) 

Now 

SoT(e3) =  S(T(e3)) = S(0, -1, 1, 1)= S(-f2 + f3 +f4) = -S(f2) + S(f3) + S(f4) =  

 -(1, 1) + ( 1, -1) + ( 0, 1) = (0,-1) 

 

Note:-  
 We can write ST for  SoT and call it the product of  S and T rather than the 

composition of S and T. 

 If ST defined then TS need not be defined. Even if both are defined, they need not 

be equal. Thus the commutative law of the product is not in general satisfied. The 

other laws of multiplication are easily seen to hold. 
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Theorem:-  LetT1 ,T2  be linear maps from U to V. Let S1, S2  be linear maps from V to 

W. P be linear maps from W to Z, where U, V, W and Z are vector spaces over the same 

field of scalars. Then prove that  

(a) S1(T1 + T2  ) = S1T1 + S1T2 . 

(b) (S1 + S2 ) T1 = S1T1 + S2T1. 

(c) P(S1T1) = P(S1)T1. 

(d) ( S1)T1 =  (S1T1) = S1( T1) , where   is a scalar. 

(e) IVT1 = T1 and T1 IU = T1  

 

 Proof :(a)  
  Since T1 and T2  be linear maps from U to V . 

   i.e. T1 : U→V ,T2 : U→V 

 T1 + T2  be linear maps from U to V. 

i.e. T1 + T2: U→V be linear maps. 

Also S1  be linear maps from V to W. 

 i.e. S1 : V→W be linear maps. 

 S1 (T1 + T2) be linear maps from U to W. 

i.e. S1 (T1 + T2): U→W be linear maps and S1T1 + S1T2 is also defined. 

 S1 (T1 + T2) and S1T1 + S1T2 have the same domain U. 

Let uU then 

S1[(T1 + T2)](u) = S1[(T1 + T2) (u)]                      [ by  definition of product] 

     = S1[T1(u) + T2 (u)]                   [ by  sum of linear map] 

     = S1(T1(u)) + S1 (T2 (u))       [S1 is linear map] 

     = (S1T1)(u) + (S1T2)(u)       [by definition of commutative] 

     =( S1T1 + S1T2)(u)               [ by  definition of sum of linear map] 

This proved that S1(T1 + T2  ) = S1T1 + S1T2 . 

 

Proof of (b) is similar to (a). 

 

(c)  Since P :W →Z ,S1 : V→W be linear maps and T1 : U→V be linear maps. 

  S1T1 : U→W be linear maps. 

 P(S1T1): U→Z be linear maps. 

  the domain of  P(S1T1) and  P(S1)T1 is common. 

Let uU then 

[P(S1T1)](u) =P[(S1T1) (u)] = P[(S1{T1 (u)}] = {(PS1)T1 (u)} = P{S1)T1 (u)} 

 

Hence, images of u under the two functions are same. 

 we get 

P(S1T1) = P(S1)T1 

(d) Proof (d) is simple. 

(e) Domain of IVT1 = domain of T1=U. So  the functions 

 IVT1 and T are same 

 (IVT1)(u)= IV(T1(u)) 

 Similarly T1Iu = T1. 

             = T1(u) 

  IVT1=T1 
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Note :-  We know that  T : U→V be a nonsingular linear map, i.e. T is one-one and   

             onto. Then T
-1

 : V→U exists and is linear. Further TT
-1

 =IV and T
-1

T = IU. 

 

Theorem:- T : U→V and S:V →W be a linear maps. Then  

(a) If S and T are nonsingular, then ST is nonsingular and (ST)
-1

 = T
-1

S
-1

. 

(b) If ST is one-one, then T is one-one.. 

(c) If ST is onto, then S is onto. 

(d) If ST is nonsingular, then T is one-one and S is onto. 

(e) If U, V, W are of the same finite dimension and ST is nonsingular, then both S 

and T are nonsingular. 

 

Proof: Since S is nonsingular. S
-1

 exists and SS
 -1

 = IW and S
-1

S = Iv. 

 Since T is nonsingular. T
-1

 exists and TT
 -1

 = IV and T
-1

T = IU. 

 Then we have (ST)( T
-1

S
-1

)= (S(T( T
-1

S
-1

) ) = (S(TT
-1

)S
-1

) = S(IVS
-1

) = SS
-1

 = IW. 

Similarly, 

 (T
-1

S
-1

)(ST) = (T
-1

(S
-1

(ST)) = (T
-1

((S
-1

S)T)) = T-1()IVT) = T
-1

T = IU 

 Hence ST is nonsingular and (ST)
-1

 = T
-1

S
-1

. 

 

The Space L(U, V) 

 

Definition:- Sum of two linear maps: 
 Let T: U→V and S : U→V be two linear transformations. The linear map 

 M: U→V defined by M(u) = S(u) + T(u) for all uU is called  the sum of two linear 

map S and T. 

 

Example:- Let T: U→V and S : U→V be two linear transformations. Then prove that 

 M: U→V defined by M(u) = S(u) + T(u) for all uU linear map. 

 

 Solution:- Let u1,u2U then  

 M(u1+ u2) = S(u1+ u2)  + T(u1+ u2)          [ by  definition of M] 

= (S(u1)+ S(u2) ) + (T(u1)+ S(u2))          [ S and T linear map] 

M(u1+ u2) = (S(u1)+ S(u2) ) + (T(u1)+ S(u2))     _______(i) 

And M(u1)+M(u2) = (S(u1)+ S(u1) ) + (T(u2)+ S(u2)) [ by  definition of M] 

        = (S(u1)+ S(u2) ) + (T(u1)+ S(u2)) 

M(u1)+M(u2) = (S(u1)+ S(u2) ) + (T(u1)+ S(u2)) _______(ii) 

 From (i) & (ii) 

     M(u1+ u2) = M(u1)+M(u2)   ______________(a) 

 

Again let  R and u1U then  

M( u1)= S( u1)+ T( u1)                           [ by  definition of M] 

   =  S(u1)+  T(u1)                           [ S and T linear map] 

   =  (S(u1)+ T(u1)) 

  =   M(u1) 

 

        M(u1)=   M(u1) ______________________(b) 
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From (a) & (b)  

M: U→V be a linear map. 

 

Definition:- Scalar multiple of a linear map:  
Let  S : U→V be  linear transformation and   be any scalar. Then the linear map 

 P: U→V defined by P(u) =  (S(u))  for all uU is called  Scalar multiple of a linear 

map S and  . 

 

Example:- Let  S : U→V be  linear transformation and   be any scalar. Then prove 

that P: U→V defined by P(u) =  (S(u)) for all uU is linear map. 

  

Solution:- Let u1,u2U and   be any scalar then  

P(u1+ u2) =  (S(u1+ u2))             [ by  definition of P] 

    =  (S(u1)+ S(u2))        [ S is linear map] 

    =   (S(u1))+  (S(u2))  

   = P(u1)+ P(u2) 

P(u1+ u2) = P(u1)+ P(u2) _______________(i) 

Again   be any scalar and uU then  

P( u) =  (S( u))               [ by  definition of P] 

                       =  ( S(u))              [ S is linear map] 

  =  ( (S(u))) 

  =   P(u)   

P( u) =  P(u) _________________(ii) 

From (i) & (ii) 

 P: U→V is linear map. 

 

Example:- Let T: V3→V2 and S : V3→V2 be two linear transformations 

 defined by T(x1, x2, x3) = (x1 – x2, x2 + x3) and S(x1, x2, x3) = (2x1, x2 - x3) then find  

(S +T) and  (S). 

 Solution:- Since (S +T) : V3→V2 is given by  

(S +T) (x1, x2, x3) = S(x1, x2, x3) + T(x1, x2, x3) 

       = (2x1, x2 - x3) + (x1 – x2, x2 + x3) 

       =  (3x1- x2, 2x2) 

And  S: V3→V2 is given by  

  (S) (x1, x2, x3) =  (S(x1, x2, x3) ) 

     =  (2x1, x2 - x3) 

     = (2 x1,  (x2 - x3)) 

 

Example:- Let T: V3→V3 and S : V3→V3 be two linear transformations 

  defined by T(e1) = (e1 + e2) ,  T(e2) = e3 , T(e3) = (e2 – e3);  S(e1) = e3 ,  

S(e2) = (2e2 – e3) and S(e3) = 0  then find (S +T) and 2T 

Solution:- Since (S +T) : V3→V3 is given by  

(S +T) (e1) = S(e1) + T(e1) =e3 +(e1 + e2)  =e1 + e2 + e3  

  (S +T) (e2) = S(e2) + T(e2) =(2e2 – e3)+e3   = 2e2  

(S +T) (e3) = S(e3) + T(e3) =0 +(e2 – e3)  =e2 - e3  
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And 2T: V3→V3 is given by 

  (2T) (e1) =  2T(e1) = 2(e1 + e2)    

  (2T) (e2) = 2T(e2) = 2e3    

  (2T) (e3) = 2T(e3) = 2(e2 – e3)  

Note: - The set of all linear transformations from U to V is denoted by L(U, V). Here U  

and V are vector spaces. 

 

Theorem: The set L(U, V) of all linear maps from U to V together with  the operations   

                     of addition and scalar multiplication as defined above is a vector space.   

Proof: 
 We have already seen that the sum of two linear maps from U to V is again a linear map 

from U to V. Hence L(U, V) is closed under addition. Also a scalar multiple of a linear 

map is again a linear map. Hence L(U, V) is closed under the operation of  scalar 

multiplication.  

Now we define zero linear map takes any vector of U into a zero vector V. 

Negative of a linear map–T: U→V is defined by  (-T)(u) = (-u) 

The following properties are the consequence of these definitions. 

If S, T, R are any linear maps belonging to L(U,V) and  ,  any scalars then  

(i) Addition in L is commutative. i.e. S + T = T+ S 

(ii)Addition in L is Associative. i.e. (S + T) + R = S+(T + R) 

(iii) There exists an 0L such that T + 0 = T. Here 0 is called identity element for  

     addition. 

(iv) For each TL there exists –TL such that T + (- T) = 0. Here (- T) is called    

     Inverse element for addition 

(v)  (S + T) = S +  T  

(vi)(   )T =  T +  T 

(vii) ( )S =  (  S) =   S 

(viii) 1.S = S. 

Hence L(U, V) satisfied all axioms for vector space so it is vector space. 

i.e. the set of all linear transformation from U to the vector space V is a vector space 

itself. 

Operator Equations 

 

Definition: Operator Equations: 
Let T: U→V be a linear map from the vector space U to the vector space V. the equation 

T(u) = vo  ,Where vo is a fixed vector in V, is called an Operator Equation. 

 

 

 

Note:(i) if v0 = 0  i.e. T(u) = 0v then the equation is called homogenous (H) equation. 

      

(ii)  if v0   0v  i.e. T(u) = vo then the equation is called nonhomogenous (NH) equation. 

(iii)The set of solutions of the equation T(u) = 0 is the kernel of T i.e. N(T). 
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Theorem:- Let T: U→V be a linear map. Given v0   0v in V, the nonhomogenous 

(NH) equation. T(u) = vo  and the associated homogenous (H) equation T(u) = 0v have the 

following properties: 

(a) If v0R(T), then (NH) has no solution for u. 

(b) If v0R(T) and  (H) has trivial solution, namely, u = 0u, as its only solution, 

then, (NH) has unique solution. 

(c) If v0R(T) and  (H) has a nontrivial solution, namely, a solution u   0U, then 

(NH) has infinite number of  solutions. In this case if u0 is a solution of (NH), 

then the set of all solutions of (NH) is linear variety u0+K, where K = N(T) is 

the set of all solutions of (H). 

Proof:- (a) is obvious. Recall the definition of R (T). 

     (b) If v0R(T), then T (u) = v0 has a solution. 

          If T (u) = 0v has only one solution, i.e. u = 0U, then N (T) = {0U}, 

           i.e. T is one-one. 

 This means T (u) = v0 cannot have more than one solution, 

  i.e. the solution of (NH) is unique. 

   (c) If T(u) = 0v has a nonzero solution , then N(T)   {0U}. 

 Let u0   U be a solution of (NH) .  

 It exists because v0  R (T).   

 Then T (u0) = v0. 

 Now if uk N(T), then  T( u0+uk ) = T (u0) + T (uk ) 

              = v0 + 0v 

              = v0 

Therefore, u0 +uk is a solution of (NH). This is true for every uk  N(T) and since 

this letter has infinite number of elements in it, (NH) also has an infinite number 

of solutions. 

From this discussion it is obvious that u0 + K, where K = N(T), is contained the 

solution set of (NH).  

Conversely, If w be any other solution of (NH) then  

T(w) = v0 =  T (v0)  or T(w - u0) = v0  

i.e. w - u0N(T) = K 

So w and u0 belong to the same parallel of K, namely u0 + K. 

Thus, the solution set of (NH) is precisely u0 + K. 

 

Note:- u0 + K is the pre-image of v0. 

 

Example:- Let D:C(0, 2 )→ C(0, 2 ) be the linear differential operator .the operator 

equation D(f)(x) = sin x. 

 

Solution:- the associated homogeneous equation (H)is as  D(f)(x)= 0 
The solution set of this equation is the set of all constant functions. 

K = {f/f(x)  = b for all x(0, 2 ) and b a constant} 

One solution of  D(f)(x) = sin x  is the function f0, where f0(x) = -cosx. 

So the solution set is f0 + K. 
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In other words, the set of all function g, where g(x) = -cos x + (a constant) is the solution 

set of D(f)(x) = sin x. 

 

Note: To solve a nonhomogeneous operator equation (NH) 

 T(u) = v0, 

Where T is linear operator, 

We go through three steps: 

Step 1. Form the associated homogeneous equation (H) 

Step 2. Get all solutions of (H). It is the kernel of T, i.e. N(T). 

Step 3. Get one particular solution u0 of (NH). 

Now the complete solution of (NH) is u0 + N(T). 

 

Examples of solving an operator equation: 

Example-1 Let T: V5→V3 be a linear transformation defined by (  )   
 

 
  ,  (  )  

 

 
  ,  (  )    ,  (  )    and  (  )   . Where *              +  is the standard 

basis for V5 and *        + is the standard basis for V3 then solve the equation T(u) = (1, 

1, 0). 

Solution: Frist calculate the value of T(u) i.e.  (              )  Here u  V5. 

Since T is a linear map 

    (              )      (  )     (  )     (  )     (  )     (  ) 

                                     =     
 

 
     

 

 
                  (Put the given values) 

                                     =   (
     

 
)   (     )        

                                     =   .
     

 
         / (        )  

   (              )  .
     

 
         /  

The associated homogeneous equation leads to the equations 

i.e.  (              )    

 
     

 
          . 

Solving these, we get         ,        

 Thus, the kernel of T is the set of all vectors of form(                ), 
 i.e.    (          )    (          )   (         )  
  N(T) = [(          ) (          ) (         )] 
Now find T(u) = (1, 1, 0). 

Since T(u) =  (              )  .
     

 
         /  

 (1, 1, 0) = .
     

 
         /  

Thus we get, 
     

 
            

Let us take                         . 

 

Then we get one particular solution of T(u) = (1, 1, 0) is u0 = (2, 0, 1, 0, 0) 

So the complete solution of the equation T(u) = (1, 1, 0) 

is the linear variety (2, 0, 1, 0, 0) + N(T)  
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 i.e. The set  (2, 0, 1, 0, 0) + *(           )        +, 
Which is same as *(   )    (   )     )        + 
In other words: The T-pre-image (1, 1, 0) of is this linear variety. 

 

Example-2 Let T: R
3
→R

2
 be a linear transformation defined by (        )  

(             )   then solve the equation T(u) = (2, 4), u  R
3
. 

Solution: Frist calculate the value of T(u) i.e. by  (        )  (             )  
The associated homogeneous equation leads to the equations 

i.e.  (        )    

 

                . 

Solving these, we get         ,         

 Thus, the kernel of T is the set of all vectors of form (           ), 
If we take           

 N(T) = [(       )] 
  N(T) = [(      )] 
 

Now find T(u) = (2, 4), u  R
3
. 

  Since T(u) =  (        )  (             )     
  (2, 4) = (             )      
Thus we get,                       ⇒                  

Let us take        then we get           

Then we get one particular solution of T(u) = (2, 4) is u0 = (3, -1, 6) 

So the complete solution of the equation T(u) = (2, 4) 

is the linear variety (3, -1, 6) + N(T)  

 i.e. The set  (3, -1, 6)+ *(       )    +, 
Which is same as *(   )  (   ) (    )    + 
In other words: The T-pre-image (2, 4) of is this linear variety. 

 

 

Example-3 Let T: R
4
→R

3
 be a linear transformation defined by  (           )  

(                 )   then solve the equation T(u) = (1,2, 3), u  R
4
. 

Solution: Frist calculate the value of T(u)  

i.e. by  (           )  (                 )  
The associated homogeneous equation leads to the equations  

i.e.  (           )    

                        . 

Solving these, we get        ,       ,       

 Thus, the kernel of T is the set of all vectors of form (            ) 
If we take          

 N(T) = [(        )]  i.e. N(T) = [ (        )]   
  N(T) = [(        )] 
 

Now find T(u) = (1,2, 3), u  R
4
 

  Since T(u) =  (           )  (                 )     
  (1,2, 3) = (                 )      
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Thus we get,                              ⇒                , 
        
                  

Let us take       then we get                 

Then we get one particular solution of T(u) = (1,2, 3)is u0 = (2, -2, 4,1) 

So the complete solution of the equation T(u) = (1,2, 3) 

is the linear variety (2, -2, 4,1)+ N(T)  

 i.e. The set  (2, -2, 4,1)+ *(        )    + 
Which is same as *(   )  (   ) (   ) (   )    + 
In other words: The T-pre-image (2, 4) of is this linear variety. 

OR 

Let us take       then we get                 

Then we get one particular solution of T(u) = (1,2, 3)is u0 = (1, -1, 3,0) 

 

Example-4 Let T: R
4
→R

3
 be a linear transformation defined by (  )     ,  (  )    , 

 (  )       and  (  )        . Where *           +  is the standard basis for R
4
 

and *        + is the standard basis for R
3
 then solve the equation T(u) = (1, 2, 3). 

Solution: Frist calculate the value of T(u)  

i.e.  (           )  Here u (           )   R
4
. 

Since T is a linear map 

    (           )      (  )     (  )     (  )     (  ) 
                                =               (     )    (      ) (Put the given values) 

                                =   (     )   (        )   (   )    

                                     =   ((     ) (        )  (   )) (        )  

   (           )  ((     ) (        )  (   ))  
The associated homogeneous equation leads to the equations 

i.e.  (           )    

                        . 

Solving these, we get         ,       ,      

 Thus, the kernel of T is the set of all vectors of form(            ), 
If we take          

 N(T) = [(         )]  i.e. N(T) = [ (         )]   
  N(T) = [(         )] 
Now find T(u) = (1, 2, 3). 

Since T(u) =  (           )  ((     ) (        )  (   ))  

 ((1, 2, 3).= ((     ) (        )  (   ))  

Thus we get,                    ,       

Let us take                       . 

If we take     ,then                  

Then we get one particular solution of T(u) = (1, 2, 3) is u0 = (1, -1, 0, -3) 

So the complete solution of the equation T T(u) = (1, 2, 3) 

is the linear variety (1, -1, 0, -3)+ N(T)  

 i.e. The set  (1, -1, 0, -3)+ *(         )    +, 
Which is same as *(              )    + 
In other words: The T-pre-image (1, 2, 3) of is this linear variety. 
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Theorem:-( dual basis existence theorem) Let V be an n-dimensional vector space and 

let B = { x1, x2,...xn}be a  basis of V. Then prove that there is a uniquely determined basis 

B* = {f1, f2, f3, …,fn}of V* such that fi(xi) = ij   i,j = 1, 2, 3, …,n. 

Proof: B = { x1, x2,...xn}be a  basis of V and (1,0,0,0,---,0) is an ordered set of n scalars, 

then there exists a unique linear functional  f1 on V such that  

f1(x1) = 1, f2(x2) = 0, f3(x3) = 0,…, fn(xn) = 0. 

In fact 

For each  i = 1, 2, 3,…,n there exists a unique linear functional fi on V such that  

fi(xi) = ij   i,j = 1, 2, 3, …,n. 

Let B* = {f1, f2, f3, …,fn} 

We shall show that B* is a basis of V*. 

For this, first we show that B* is linearly independent.  

Let 1  f1+ 2  f2+ 3  f3+ ….+ n  fn = 0                    

 ( 1  f1+ 2  f2+ 3  f3+ ….+ n  fn)(x) = 0(x)      

1  f1(x) + 2  f2(x) + 3  f3(x) + ….+ n  fn)(x) = 0 

i.e. ∑     (  )
 
                    

⇒∑      
 
      

⇒                 
Hence B* is linearly independent. 

 

Definition:- Annihilators : 

Let W be a subset of a vector space V over a field k and V* its dual. Let W be a subset of 

V which is not necessarily a subspace. Then a linear functional      is called an 
annihilator of W if  ( )    for every    . 

 It is denoted by   . 

i.e. The set of all linear functional f on V such that  ( )    for every    . 

i.e.   ( )   , is called an annihilator of W. 

Also    {      ( )       } 
Note:- Annihilator of V is the zero functional on V. and * +    . 
 

Theorem:-  Let W be a non-empty subset of a vector space V. Then prove that the 

annihilator   of W is subspace of    .  (OR)   Prove that the    is subspace of    . 
Proof:- By the definition of   , 

It is clear that      and      . 
Now suppose        

  and for any scalars       and for any      
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             (       )( )     ( )    ( )        
                                                     (        

 ) 
                                        =   0 

          
  

Hence,    is subspace of    . 
 

Note:-    is subspace of    , whether W is a subspace of V or not. 

 

Theorem:- Let V be a finite dimensional vector space over the field F and let W be a      

                   subspace of V. Then Prove that dim W + dim W
0
 = dim V. 

(OR) If W is an m-dimensional subspace of an n-dimensional vector space V. then show   

that the annihilator    is an (n-m) dimensional subspace of   . 
Proof:- 

  Let V be a finite dimensional vector space over the field F. 

Let dimW = m 

Let W be a subspace of V. Then    is subspace of    . 
Since W is a subspace of V so that  

dimW  dim dimW 

i.e. m n. 

Let { x1, x2,...xm}be a  basis of W. 

So it can be extended to form a basis of V. 

Choose vectors xm+1, xm+2,... xn in V such that B = { x1, x2,...xm , xm+1, xm+2,... xn }is basis 

of V. 

Let {f1, f2, f3, …,fn}be basis of    which is the dual to B. 

Now we claim that { fm+1, fm+2,... fn } is basis of   . 

Obviously,     
           because   (  )    {

       
       

 

And        if          and j m. 

Since { fm+1, fm+2,... fn } is a subset of linearly independent  

Now we show that { fm+1, fm+2,... fn } spans   . 

Let      be an arbitrary linear functional, 

So that  (  ) =  0 for          _________(1) 

      and       
But {f1, f2, f3, …,fn} generates   . 

   ∑ (  )  

 

   

 

 =  (  )    (  )       (  )    (    )      (    )        (  )   

 

=  (    )      (    )        (  )    ∑  (  )  
 
       

 

This shows that { fm+1, fm+2,... fn }} spans   . 

Thus, { fm+1, fm+2,... fn } is basis of   . 

Accordingly, 

dim W
0
 = n – m = dim V - dim W. 
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Corollary:-If W and W1 are two subspaces of a vector space V which are annihilated by 

the subspace   then dimW = dimW1.  

Proof:-  W and W1 are two both annihilated by the subspace   and both are subspaces 

of V then we have 

dim W + dim W
0
 = dim V   _______________(1) 

dim W1 + dim W
0
 = dim V  _______________(2) 

Now subtract (2) from (1) then we get 

 dim W = dim W1 

 

Theorem:- If W and W1 are two subspaces of a  finite dimensional vector space V, then  

W1 = W2   if and only if W1
0
 = W2

0
 . 

Proof:-  If  W1 = W2   then obviously W1
0
 = W2

0
. 

Let us suppose that W1   W2     

Then there is at least one vector W1in which not in W2.  

Suppose    W2 and   W1 

Then there a linear functional f such that f(y) = 0      but f(x)      

This implies that   W1
0
 ,but    W2

0 
 and thus W1

0
   W2

0
. 

Hence W1
0
 = W2

0
 if W1 = W2    

 

Bilinear forms 

Definition:- Bilinear form (or) 2-Form: (or) bilinear functional   

Suppose VC is finite dimensional  vector space over a field R. Let               and 

      be arbitrary. A mapping         is a bilinear (or bilinear functional) on V. 

if following are satisfied: 

(i)  (         )      (    )     (    ) 
(  )  (         )     (    )     (    ) 
 

Note:-  

→We express condition (i) by saying f is linear in its first variable (co-ordinate) and  

     condition (ii) by saying f is linear  in its second variable (co-ordinate). 

→ Such mapping f id also known as Sesqui-linear form. 

Example:  

Prove that the zero function from          is a bilinear on V.  

i.e. Let from          defined by from   (    )           is bilinear on V. 

Solution: 

Let                and       

  (    )   (    )   (    )   (    )    
 

Since  (         )    

                                                

                                           (    )     (    ) 
Similarly,  

            (         )    

                                                

                                           (    )     (    ) 
   is bilinear form. 
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Example: Let V= R
3
. Suppose u =(x1,x2,x3) and v = (y1,y2,y3) R

3
 and defined by 

 (   )                  then Show that f is a bilinear for. 

Solution:- 

Let   (       ) ,   (       )and   (       )R
3
 and       

       (                       ) 
Now, 

  (       )  (       )    (       )   (       )   

                            (               )   (               ) 
                             (   )    (   ) 
Similarly, 

 (       )    (       )     (       )    (       ) 
                            (               )   (               ) 
                             (   )    (   ) 
 

   is bilinear form. 

 

Example: 

Which of the following functions f define on vectors u = (     ) and v = (     ) in R
2
 are 

bilinear form?  

(1)  f(u, v)= x1y2 - x2y1  

(2) f(u, v)= (     )
      . 

 

Solution:-(1) 

Let   (    ) ,   (    )and   (    )R
2
 and       

       (                       )  
And       (                       ) 
Now, 

  (       )  (       )   (       )   
                            (         )   (         ) 
                             (   )    (   ) 
Similarly, 

 (       )    (       )    (       ) 
                            (         )   (         ) 
                             (   )    (   ) 
 

   is bilinear form. 

 

Solution:-(2) 

Let   (    ) ,   (    )and   (    )R
2
 and       

       (                       )  
And       (                       ) 
Now, 

  (    )  (      )
        

                      
           

        ________________(i) 

And       

  (   )   ,(     )
      - 
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        ___________________(ii) 

From (i) and (ii)  

 (    )    (   ) 
   is not a bilinear form on R

2
. 

 

 

Example: 

Let   and   be linear functional on a vector space V over R. Define a map         

by the formula  (   )   ( )  ( )        . Then show that T is bilinear on V. 

Solution: 

Let  u,v,w   and       

  (       )   (     )  ( ) 
                              ,  ( )    ( )-  ( )     (                  ) 
          ( )  ( )    ( )  ( )  
                                (   )    (   ) 
Similarly,  

           
 (       )   ( )  (     ) 
                               ( ) ,  ( )    ( )-     (                  ) 
          ( )  ( )    ( )  ( )  
                                (   )    (   )  
 

   is bilinear form. 

 

Example: 

Define a map        by the formula  (   )  ∑     
 
     where   (          ) 

and   (          ). Then show that T is bilinear on   . 

Solution: 

Let  u,v,w    where   (          ) and   (          ) and   
(          )   and       

  (       )  ∑(       )  

 

   

 

                              ∑ (           )
 
         

         ∑       ∑     
 
   

 
     

                                (   )    (   )  
Similarly,  

           

 (       )  ∑  (       )

 

   

 

                          ∑ (           )
 
         

                ∑        ∑     
 
   

 
             

                            (   )    (   )  
 

   is bilinear form. 
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Note :-  The set of all bilinear forms on V denoted by B(V). 

 


